def setUpClass(cls): if MPControl.is_initialized: MPControl.shutdown() MPControl.set_multiprocess_engine("dask-local") MPControl.set_processes(1) MPControl.connect()
BSUBTILIS_1_METADATA = 'GSE67023_meta_data.tsv' BSUBTILIS_2_EXPRESSION = 'expression.tsv.gz' BSUBTILIS_2_METADATA = 'meta_data.tsv' CV_SEEDS = list(range(42, 52)) # Multiprocessing uses the pathos implementation of multiprocessing (with dill instead of cPickle) # This is suited for a single computer but will not work on a distributed cluster n_cores_local = 10 local_engine = True # Multiprocessing needs to be protected with the if __name__ == 'main' pragma if __name__ == '__main__' and local_engine: MPControl.set_multiprocess_engine("multiprocessing") MPControl.client.processes = n_cores_local MPControl.connect() # Inference on B. subtilis data set 1 (GSE67023) with BBSR # Using the crossvalidation wrapper # Run the regression 10 times and hold 20% of the gold standard out of the priors for testing each time # Each run is seeded differently (and therefore has different holdouts) # Create a crossvalidation wrapper cv_wrap = CrossValidationManager() # Assign variables for grid search cv_wrap.add_gridsearch_parameter('random_seed', CV_SEEDS) # Create a worker
def tearDownClass(cls): if MPControl.is_initialized: MPControl.shutdown() MPControl.set_multiprocess_engine("local") MPControl.connect()