def test_as_matrix(self): from inferno.extensions.layers.reshape import AsMatrix input = self._get_input_variable(10, 20, 1, 1) as_matrix = AsMatrix() output = as_matrix(input) self.assertEqual(list(output.size()), [10, 20])
def _make_test_model(input_channels): toy_net = nn.Sequential(nn.Conv2d(input_channels, 8, 3, 1, 1), nn.ELU(), nn.MaxPool2d(2), nn.Conv2d(8, 8, 3, 1, 1), nn.ELU(), nn.MaxPool2d(2), nn.Conv2d(8, 16, 3, 1, 1), nn.ELU(), nn.AdaptiveMaxPool2d((1, 1)), AsMatrix(), nn.Linear(16, 10)) return toy_net
def _make_test_model(): toy_net = nn.Sequential(nn.Conv2d(3, 128, 3, 1, 1), nn.ELU(), nn.MaxPool2d(2), nn.Conv2d(128, 128, 3, 1, 1), nn.ELU(), nn.MaxPool2d(2), nn.Conv2d(128, 256, 3, 1, 1), nn.ELU(), nn.AdaptiveMaxPool2d((1, 1)), AsMatrix(), nn.Linear(256, 10), nn.Softmax()) return toy_net
def _make_test_model(): import torch.nn as nn from inferno.extensions.layers.reshape import AsMatrix toy_net = nn.Sequential(nn.Conv2d(3, 128, 3, 1, 1), nn.ELU(), nn.MaxPool2d(2), nn.Conv2d(128, 128, 3, 1, 1), nn.ELU(), nn.MaxPool2d(2), nn.Conv2d(128, 256, 3, 1, 1), nn.ELU(), nn.AdaptiveAvgPool2d((1, 1)), AsMatrix(), nn.Linear(256, 10), nn.Softmax()) return toy_net