Exemple #1
0
    def posterior_predictive(self, target_names=None, data={}):
        if self.inference_method is None:
            raise RuntimeError(
                "posterior_preductive cannot be used before using the fit function."
            )

        # only non-observed variables can be in target_names
        if target_names is None:
            target_names = [
                name for name in self.vars.keys() if name in self.observed_vars
            ]
        else:
            if any(var not in self.observed_vars for var in target_names):
                raise ValueError(
                    "target_names must correspond to observed variables during the inference: \
                    {}".format(self.observed_vars))

        # posterior_predictive uses pmodel variables, but global hidden (parameters) intercepted with qmodel variables.
        return Query(
            self.inference_method.expanded_variables["p"],
            target_names,
            data,
            enable_interceptor_variables=(
                # just interested in intercept the global parameters, not the local hidden
                self.inference_method.get_interceptable_condition_variables()
                [0],
                None))
Exemple #2
0
 def posterior_predictive(self, target_names=None, data={}):
     # posterior_predictive uses pmodel variables, but global hidden (parameters) intercepted with qmodel variables.
     return Query(
         self.expanded_variables["p"],
         target_names,
         data,
         # just interested in intercept the global parameters, not the local hidden
         enable_interceptor_variables=(self.enable_interceptor_global,
                                       None))
Exemple #3
0
 def posterior_predictive(self, target_names=None, data={}):
     # posterior_predictive uses pmodel variables, but global hidden (parameters) intercepted with qmodel variables.
     expanded_data = {
         **data,
         **(util.runtime.try_run({
             k: v.sample()
             for k, v in self.states.items() if k not in data
         }))
     }
     return Query(self.pmodel.vars, target_names, expanded_data)
Exemple #4
0
    def prior(self, target_names=None, data={}, size_datamodel=1):

        if size_datamodel > 1:
            variables, _ = self.expand_model(size_datamodel)
        elif size_datamodel == 1:
            variables = self.vars
        else:
            raise ValueError(
                "size_datamodel must be greater than 0 but it is {}".format(
                    size_datamodel))

        return Query(variables, target_names, data)
Exemple #5
0
    def posterior(self, target_names=None, data={}):
        if self.inference_method is None:
            raise RuntimeError(
                "posterior cannot be used before using the fit function.")

        # only non-observed variables can be in target_names
        if target_names is None:
            target_names = [
                name for name in self.vars.keys()
                if name not in self.observed_vars
            ]
        else:
            if any(var in self.observed_vars for var in target_names):
                raise ValueError(
                    "target_names must correspond to not observed variables during the inference: \
                    {}".format([
                        v for v in self.vars.keys()
                        if v not in self.observed_vars
                    ]))

        return Query(self.inference_method.expanded_variables["q"],
                     target_names, data)
Exemple #6
0
 def posterior(self, target_names=None, data={}):
     return Query(self.states, target_names, data)
Exemple #7
0
 def posterior(self, target_names=None, data={}):
     return Query(self.expanded_variables["q"], target_names, data)