Exemple #1
0
options_ref['--data_timescheme'] = 'rk2'
options_ref['--channel_names'] = 'u'
options_ref = conf.setoptions(argv=None, kw=options_ref, configfile=configfile)
if torch.cuda.is_available():
    options_ref['--device'] = 'cuda'
else:
    options_ref['--device'] = 'cpu'

globalnames_ref, callback_ref, model_ref, data_model_ref, sampling_ref, addnoise_ref = setenv.setenv(
    options_ref)

globals().update(globalnames_ref)

# initialization of parameters
initparameters.initkernels(model_ref)
initparameters.initexpr(model_ref, viscosity=viscosity, pattern=dataname)

# model_ref.polys[k].coeffs(iprint=1)
for poly in model_ref.polys:
    poly.coeffs(iprint=1)

#%%
options_1 = {}
options_1['--name'] = 'heat-frozen-upwind-sparse0.005-noise0.001'
configfile_1 = 'checkpoint/' + options_1['--name'] + '/options.yaml'
options_1 = conf.setoptions(argv=None,
                            kw=None,
                            configfile=configfile_1,
                            isload=True)
if torch.cuda.is_available():
    options_1['--device'] = 'cuda'
Exemple #2
0
print(options)
globalnames, callback, model, data_model, sampling, addnoise = setenv.setenv(
    options)

globals().update(globalnames)

torch.cuda.manual_seed_all(torchseed)
torch.manual_seed(torchseed)
np.random.seed(npseed)

# initialization of parameters
if start_from < 0:
    initparameters.initkernels(model, scheme=scheme)
    # initparameters.renormalize(model, u0)
    initparameters.initexpr(model, viscosity=viscosity, pattern='random')
else:  # load checkpoint of layer-$start_from
    callback.load(start_from, iternum='final')

#%% train
for block in blocks:
    if block <= start_from:
        continue
    print('block: ', block)
    print('name: ', name)
    r = np.random.randn() + torch.randn(1, dtype=torch.float64,
                                        device=device).item()
    with callback.open() as output:
        print('device: ', device, file=output)
        print('generate a random number to check random seed: ',
              r,