def get_cover_page(): im_path = input()[0] vid_path = input()[1] style_layer = ["conv1_1", "conv2_1", "conv3_1", "conv4_1", "conv5_1"] #intializing output directory output_dir = "./output" fest = get_fest() image_for_style = "./" + fest + ".jpg" content_image = im_path image_width = 800 image_height = 600 color_channels = 3 beta = 5 #less content ratio alpha = 200 #or else try 200 l = 1e4 mean_values = np.array([123.68, 116.779, 103.939]).reshape( (1, 1, 1, 3)) vgg = scipy.io.loadmat("vgg.mat") layers = vgg['layers'] # 0 l 0 0 2 0 0 """ automate text_retreival """ main() superimpose()
def test_once(filename): """Eval CIFAR-10 for a number of steps.""" with tf.Graph().as_default() as g: # Get loss. # Create placeholder. images = tf.placeholder(tf.float32, shape=(FLAGS.batch_size, IMAGE_SIZE, IMAGE_SIZE, 3)) loss_label, loss_domain = cifar10.inference(images) # Restore the moving average version of the learned variables for eval. variable_averages = tf.train.ExponentialMovingAverage(cifar10.MOVING_AVERAGE_DECAY) variables_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver(variables_to_restore) _, _, _, _, _, _, \ x, y, domain= input.input() # Supplement the number of examples to multiplier of 25. num_of_examples = np.shape(x)[0] remainder = FLAGS.batch_size - int(math.ceil(num_of_examples/FLAGS.batch_size)) index = range(num_of_examples) + [0] * remainder with tf.Session() as sess: #need to modify for test saver.restore(sess, filename) global_step = int(filename.split('-')[1]) # Allocate results in a list. losses_label = [] losses_domain = [] # Start the queue runners. step = 0 while step + FLAGS.batch_size <= len(index): label_loss_value, domain_loss_value = sess.run([loss_label, loss_domain], feed_dict = {images:x[index[step:step+FLAGS.batch_size], :]}) losses_label.append(label_loss_value) losses_domain.append(domain_loss_value) step = step + FLAGS.batch_size # Convert list of lists to numpy array. losses_label = np.asarray(losses_label) losses_domain = np.asarray(losses_domain) losses_label = losses_label.reshape((-1, 21)) losses_domain = losses_domain.reshape((-1, 2)) losses_label = losses_label[:num_of_examples, :] losses_domain = losses_domain[:num_of_examples, :] sp.savez('test.npz', losses_label = losses_label, losses_domain = losses_domain, y = y, domain = domain) return losses_label, losses_domain, y, domain
def eval_once(filename): """Eval CIFAR-10 for a number of steps.""" with tf.Graph().as_default() as g: # Get loss. # Create placeholder. images = tf.placeholder(tf.float32, shape=(FLAGS.batch_size, IMAGE_SIZE, IMAGE_SIZE, 3)) labels = tf.placeholder(tf.int32, shape = (FLAGS.batch_size,)) domain_labels = tf.placeholder(tf.int32, shape = (FLAGS.batch_size,)) #loss_label, loss_domain = cifar10.inference(images) logits1, logits2= cifar10.inference(images) loss_label = cifar10.loss_without_decay(logits1, labels) loss_domain = cifar10.loss_without_decay(logits2, domain_labels) # Restore the moving average version of the learned variables for eval. variable_averages = tf.train.ExponentialMovingAverage(cifar10.MOVING_AVERAGE_DECAY) variables_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver(variables_to_restore) x_tr, y_tr, d_tr, nl_x_v, nl_y_v, nl_d_v, l_x_te, l_y_te, l_d_te = input.input() # Calculate losses of training, non-lifelog validation, and lifelog test. y_tr_loss, d_tr_loss = eval_a_dataset(saver, filename, x_tr, y_tr, d_tr, images, labels, domain_labels, loss_label, loss_domain) y_nl_loss, d_nl_loss = eval_a_dataset(saver, filename, nl_x_v, nl_y_v, nl_d_v, images, labels, domain_labels, loss_label, loss_domain) y_l_loss, d_l_loss = eval_a_dataset(saver, filename, l_x_te, l_y_te, l_d_te, images, labels, domain_labels, loss_label, loss_domain) return y_tr_loss, d_tr_loss, y_nl_loss, d_nl_loss, y_l_loss, d_l_loss
def main(): #this varibale stores all the kingdoms to a dictionary with Kingdom_name: kingdom_object pair all_kingdom_dictionary = get_all_kingdom_list() #this variable stores the sender of message sender = get_sender() # below two lines get the message list from this file inp = input() message_list = inp.read_input() #Here we create a list of communication object communication_list = [] for destination, message in message_list: communication_object = communication( message, all_kingdom_dictionary[destination]) communication_list.append(communication_object) #here we create the list of all allies senders_ally = [] for communication_object in communication_list: if (communication_object.is_valid_message() ) and communication_object.getname() not in senders_ally: senders_ally.append(communication_object.getname()) if len(senders_ally) >= 3: print(sender, end=" ") for ally in senders_ally: print(ally, end=" ") else: print("NONE")
def search_filter(gui): rex = input.input(gui.cfg, "Search Filter") if not rex: return gui.set_filter(None) elif rex.startswith("rgx:"): rex = rex[4:] else: rex = "(?i).*" + re.escape(rex) + ".*" return gui.set_filter(only_with(rex, regex=True))
def __init__(self): self.fav = [None] * 10 self.map = Graph("graph.gml") self.tts = tts.tts() self.gps = imu_gps.imu_gps() self.stop_dev = True self.input = input.input() self.key = -1 self.out_of_path = False self.selfile = None self.attributesfile = None self.attr = {}
def on_state_change(name, id, state, value): #logging.debug("Input %s %d state change", name, id) if (name, id) not in inputs_per_id: #logging.debug("Input not known, creating") i = input.input(name + "_" + str(id), name, id) inputs_per_id[(name, id)] = i inputs[i.name] = i iomap.Iomap[i.name] = i i.on_state_change(state, value) else: #logging.debug("Input known") inputs_per_id[(name, id)].on_state_change(state, value)
def init(): logging.debug("Inputs init") # timer is always defined input itimer = mytimer.timer() inputs_per_id[("", "Timer")] = itimer inputs["Timer"] = itimer #defined inputs in configuration for i in configuration.defined_inputs: iobj = input.input(i['name'], i['service'], i['id']) inputs_per_id[(i['service'], i['id'])] = iobj inputs[i['name']] = iobj iomap.Iomap[i['name']] = iobj
def goto(self): term = input(self.cfg, "Goto") if not term: return links = [] terms = term.split(',') for t in terms: try: links.append(int(t)) except: if t.count('-') == 1: d = t.index('-') a = t[:d] b = t[(d+1):] try: a = int(a) b = int(b) except: self.cfg.log("Unable to interpret range!") return for l in xrange(a,b + 1): links.append(l) else: self.cfg.log("Unable to interpret link!") return out = "Going to link" if len(links) != 1: out += "s " for n in links[:-1]: out += "%d, " % n out += "and %d" % links[-1] else: out += " %d" % links[0] self.cfg.log(out) for l in links: self.dogoto(l)
def goto(self): term = input(self.cfg, "Goto") if not term: return links = [] terms = term.split(',') for t in terms: try: links.append(int(t)) except: if t.count('-') == 1: d = t.index('-') a = t[:d] b = t[(d + 1):] try: a = int(a) b = int(b) except: self.cfg.log("Unable to interpret range!") return for l in xrange(a, b + 1): links.append(l) else: self.cfg.log("Unable to interpret link!") return out = "Going to link" if len(links) != 1: out += "s " for n in links[:-1]: out += "%d, " % n out += "and %d" % links[-1] else: out += " %d" % links[0] self.cfg.log(out) for l in links: self.dogoto(l)
def predict_once(filename): """Eval CIFAR-10 for a number of steps.""" with tf.Graph().as_default() as g: # Get loss. # Create placeholder. images = tf.placeholder(tf.float32, shape=(FLAGS.batch_size, IMAGE_SIZE, IMAGE_SIZE, 3)) labels = tf.placeholder(tf.int32, shape = (FLAGS.batch_size,)) domain_labels = tf.placeholder(tf.int32, shape = (FLAGS.batch_size,)) loss_label, loss_domain = cifar10.inference(images) # Restore the moving average version of the learned variables for eval. variable_averages = tf.train.ExponentialMovingAverage(cifar10.MOVING_AVERAGE_DECAY) variables_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver(variables_to_restore) x_tr, y_tr, d_tr, nl_x_v, nl_y_v, nl_d_v, l_x_te, l_y_te, l_d_te = input.input() # Calculate predictions of training, non-lifelog validation, and lifelog test. tr_y_p, tr_d_p = predict_a_dataset(saver, filename, x_tr, y_tr, d_tr, images, labels, domain_labels, loss_label, loss_domain) nl_y_p, nl_d_p = predict_a_dataset(saver, filename, nl_x_v, nl_y_v, nl_d_v, images, labels, domain_labels, loss_label, loss_domain) l_y_p, l_d_p = predict_a_dataset(saver, filename, l_x_te, l_y_te, l_d_te, images, labels, domain_labels, loss_label, loss_domain) # Get lengths of results. L1 = len(tr_y_p) L2 = len(nl_y_p) L3 = len(l_y_p) y_tr=y_tr[:L1] d_tr=d_tr[:L1] nl_y_v=nl_y_v[:L2] nl_d_v=nl_d_v[:L2] l_y_te=l_y_te[:L3] l_d_te=l_d_te[:L3] return tr_y_p, tr_d_p, nl_y_p, nl_d_p, l_y_p, l_d_p, y_tr, d_tr, nl_y_v, nl_d_v, l_y_te, l_d_te
# 4x4 w_fc1 = tf.Variable(tf.truncated_normal(shape=[4 * 4 * 128, 512], stddev=5e-2)) b_fc1 = tf.Variable(tf.constant(0.1, shape=[512])) h_conv5_flat = tf.reshape(Pool4, [-1, 4 * 4 * 128]) h_fc1 = tf.nn.relu(tf.matmul(h_conv5_flat, w_fc1) + b_fc1) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) w_fc2 = tf.Variable(tf.truncated_normal(shape=[512, 3], stddev=5e-2)) b_fc2 = tf.Variable(tf.constant(0.1, shape=[3])) logits = tf.matmul(h_fc1_drop, w_fc2) + b_fc2 y_pred = tf.nn.softmax(logits) x_train, y_train = input.input('train', 5000) x_test, y_test = input.input('eval', 1000) y_train_one_hot = tf.squeeze(tf.one_hot(y_train, 3), axis=1) y_test_one_hot = tf.squeeze(tf.one_hot(y_test, 3), axis=1) loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=Y_Label, logits=logits)) train_step = tf.train.RMSPropOptimizer(1e-3).minimize(loss) correct_prediction = tf.equal(tf.argmax(y_pred, 1), tf.argmax(Y_Label, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) with tf.Session() as sess: sess.run(tf.global_variables_initializer())
import msvcrt import time from input import input i = input() def test(): print("DOwn") def test2(): print("Up") i.addKeyBinding("UP", "whileKeyDown", [test]) i.addKeyBinding("UP", "whileKeyDown", [test2]) while(True): #print(msvcrt.kbhit()) #if(msvcrt.kbhit()): # msvcrt.getch() time.sleep(0.1) i.update()
import input import regex real = input.input(2, 2020) sample = input.input("""1-3 a: abcde 1-3 b: cdefg 2-9 c: ccccccccc""") def parse(s): lo, hi, char, pwd = regex.search(r"(\d+)-(\d+) (\w): (.*)", s).groups() lo = int(lo) hi = int(hi) # part 1 # return letters >= lo and letters <= hi return (pwd[lo - 1] == char) + (pwd[hi - 1] == char) == 1 count = 0 for pwd in real: if parse(pwd): count += 1 print(parse(pwd)) print(count)
def main(unused_argv): train_dataset, validate_dataset, test_dataset = input.input( shuffle_files=False) #Text information info = tf.constant([ "Batch size = %s" % f.FLAGS.batch_size, "Epochs = %s" % f.FLAGS.num_epochs, "Learning rate = %s" % f.FLAGS.learning_rate, "Batch normalization = No", "Window size = %s" % f.FLAGS.window_size, "Shuffle Files = No", "CNN model = %s" % f.FLAGS.cnn_model, "Shuffle Samples = YES" ]) with tf.name_scope('input'): x = tf.placeholder(tf.float32, [ None, input.SAMPLE_DEPTH, input.SAMPLE_HEIGHT, input.SAMPLE_WIDTH ]) y_ = tf.placeholder(tf.float32, [None, 2]) dropout_rate = tf.placeholder(tf.float32) is_training = tf.placeholder(tf.bool) with tf.name_scope('logits'): if f.FLAGS.cnn_model == "lenet5": logits = lenet5.model_fn(sample_input=x, is_training=is_training, summaries=summaries) with tf.name_scope('loss'): cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=logits) mean_cross_entropy_loss = tf.reduce_mean(cross_entropy) loss_summ = tf.summary.scalar('Mean_cross_entropy_loss', mean_cross_entropy_loss) summaries['train'].append(loss_summ) #summaries['validate'].append(loss_summ) with tf.name_scope('adam_optimizer'): optimizer = tf.train.AdamOptimizer( f.FLAGS.learning_rate).minimize(mean_cross_entropy_loss) with tf.name_scope('accuracy'): preds = tf.argmax(logits, 1) correct_preds = tf.argmax(y_, 1) equal = tf.equal(preds, correct_preds) training_accuracy_op = tf.reduce_mean(tf.cast(equal, tf.float32)) summaries['train'].append( tf.summary.scalar('Training_Accuracy', training_accuracy_op)) with tf.name_scope('Evaluation_Metrics'): tp_op = evaluate.tp(logits=logits, labels=y_) fp_op = evaluate.fp(logits=logits, labels=y_) tn_op = evaluate.tn(logits=logits, labels=y_) fn_op = evaluate.fn(logits=logits, labels=y_) tp_sum = tf.placeholder(tf.float32) tn_sum = tf.placeholder(tf.float32) fp_sum = tf.placeholder(tf.float32) fn_sum = tf.placeholder(tf.float32) precision_op = evaluate.precision(tp=tp_sum, fp=fp_sum, tn=tn_sum, fn=fn_sum) accuracy_op = evaluate.accuracy(tp=tp_sum, fp=fp_sum, tn=tn_sum, fn=fn_sum) recall_op = evaluate.recall(tp=tp_sum, fp=fp_sum, tn=tn_sum, fn=fn_sum) fscore_op = evaluate.fscore(tp=tp_sum, fp=fp_sum, tn=tn_sum, fn=fn_sum) precision_summ = tf.summary.scalar('Precision', precision_op) accuracy_summ = tf.summary.scalar('Accuracy', accuracy_op) recall_summ = tf.summary.scalar('Recall', recall_op) fscore_summ = tf.summary.scalar('Fscore', fscore_op) summaries['validate'].append(accuracy_summ) summaries['validate'].append(precision_summ) summaries['validate'].append(recall_summ) summaries['validate'].append(fscore_summ) summaries['test'].append(accuracy_summ) summaries['test'].append(precision_summ) summaries['test'].append(recall_summ) summaries['test'].append(fscore_summ) print("Saving graph to %s" % f.FLAGS.log_dir) train_writer = tf.summary.FileWriter(f.FLAGS.log_dir + "/train") validate_writer = tf.summary.FileWriter(f.FLAGS.log_dir + "/validate") test_writer = tf.summary.FileWriter(f.FLAGS.log_dir + "/test") train_writer.add_graph(tf.get_default_graph()) train_summaries = tf.summary.merge(summaries['train']) validate_summaries = tf.summary.merge(summaries['validate']) test_summaries = tf.summary.merge(summaries['test']) with tf.Session() as sess: train_writer.add_summary(sess.run(tf.summary.text("Information", info))) train_iter = train_dataset.make_initializable_iterator() train_next_elem = train_iter.get_next() sess.run(tf.global_variables_initializer()) global_step = 0 display_freq = 10 validate_freq = 50 test_freq = 50 for epoch in range(1, f.FLAGS.num_epochs + 1): sess.run(train_iter.initializer) step_time = 0.0 fetch_time = 0.0 while True: try: a = time.time() global_step += 1 sample, label = sess.run(train_next_elem) fetch_time += time.time() - a #print (sample.shape, label.shape) #print (label) #for s in sample[0][0]: # print (s) a = time.time() _, summ = sess.run([optimizer, train_summaries], feed_dict={ x: sample, y_: label, dropout_rate: 0.5, is_training: True }) train_writer.add_summary(summ, global_step) step_time += time.time() - a except tf.errors.OutOfRangeError: break if global_step % display_freq == 0: batch_loss, batch_accuracy = sess.run( [mean_cross_entropy_loss, training_accuracy_op], feed_dict={ x: sample, y_: label, dropout_rate: 1.0, is_training: False }) print( "Epoch {:3}\t Step {:5}:\t Loss={:.3f}, \tTraining Accuracy={:.5f} \tStep Time {:4.2f}m, Fetch Time {:4.2f}m" .format(epoch, global_step, batch_loss, batch_accuracy, step_time / 60, fetch_time / 60)) step_time = 0.0 fetch_time = 0.0 #Validate and test after each epoch val_it = validate_dataset.make_one_shot_iterator() val_next_elem = val_it.get_next() tot_tp, tot_tn, tot_fp, tot_fn = 0, 0, 0, 0 while True: try: sample, label = sess.run(val_next_elem) tp, fp, tn, fn = sess.run( [tp_op, fp_op, tn_op, fn_op], feed_dict={ x: sample, y_: label, dropout_rate: 1.0, is_training: False }) except tf.errors.OutOfRangeError: break tot_tp += tp tot_fp += fp tot_fn += fn tot_tn += tn precision, recall, accuracy, fscore, summ = sess.run([ precision_op, recall_op, accuracy_op, fscore_op, validate_summaries ], feed_dict={ tp_sum: tot_tp, tn_sum: tot_tn, fp_sum: tot_fp, fn_sum: tot_fn }) validate_writer.add_summary(summ, global_step) print("Epoch %d, Step %d" % (epoch, global_step)) print("=" * 10, "Validating Results", "=" * 10) print("TP: %g\nTN: %g\nFP: %g\nFN: %g" % (tot_tp, tot_tn, tot_fp, tot_fn)) print( "\tPrecision: %g\n\tRecall: %g\n\tF1_score: %g\n\tAccuracy: %g" % (precision, recall, fscore, accuracy)) test_it = test_dataset.make_one_shot_iterator() test_next_elem = test_it.get_next() tot_tp, tot_tn, tot_fp, tot_tn = 0, 0, 0, 0 while True: try: sample, label = sess.run(test_next_elem) tp, fp, tn, fn = sess.run( [tp_op, fp_op, tn_op, fn_op], feed_dict={ x: sample, y_: label, dropout_rate: 1.0, is_training: False }) except tf.errors.OutOfRangeError: break tot_tp += tp tot_fp += fp tot_fn += fn tot_tn += tn precision, recall, accuracy, fscore, summ = sess.run([ precision_op, recall_op, accuracy_op, fscore_op, test_summaries ], feed_dict={ tp_sum: tot_tp, tn_sum: tot_tn, fp_sum: tot_fp, fn_sum: tot_fn }) test_writer.add_summary(summ, global_step) print("=" * 10, "Testing Results", "=" * 10) print("TP: %g\nTN: %g\nFP: %g\nFN: %g" % (tot_tp, tot_tn, tot_fp, tot_fn)) print( "\tPrecision: %g\n\tRecall: %g\n\tF1_score: %g\n\tAccuracy: %g" % (precision, recall, fscore, accuracy)) print("=" * 10, "===============", "=" * 10)
def runm(self): time.Clock() from os.path import dirname, join here = dirname(__file__) scr = display.set_mode((600, 560)) print(menu.__doc__) f = font.Font(join("data/FEASFBRG.ttf"), 45) f1 = font.Font(join("data/FEASFBRG.ttf"), 25) f2 = font.Font(join("data/FEASFBRG.ttf"), 15) #'data/321impact.ttf' mainmenu = f.render("SNAKE GAME", 1, (0, 0, 0)) r = mainmenu.get_rect() r.centerx, r.top = 300, 120 # scr.blit(image.load(join('data/bg.png')),(0,0)) if time.get_ticks()&1 else scr.fill(-1) background_main = image.load("data/bg.png").convert() scr.blit(background_main, (0, 0)) bg = scr.copy() scr.blit(mainmenu, r) display.flip() menu1 = { "menu": ["PLAY", "ABOUT", "EXIT"], "font1": f1, "pos": "center", "color1": (255, 0, 0), "light": 6, "speed": 200, "lag": 20, } menu2 = { "menu": ["1 PLAYER", "2 PLAYERS VS", "2 PLAYERS CO-OP", "2 PLAYERS NETWORK", "BACK"], "font1": f1, "font2": f, "pos": "center", "color1": (255, 0, 0), "light": 5, "speed": 200, "lag": 20, } # "pos":'center',"color1":(50,100,150),"light":5,"speed":0,"font1":f1,"font2":f,"justify":0} menu3 = { "menu": ["AI-1", "AI-2"], "pos": (50, 250), "color1": (255, 0, 0), "light": 5, "speed": 0, "font1": f1, "font2": f, "justify": 0, } menu4 = { "menu": ["BACK"], "pos": (20, 450), "color1": (255, 0, 0), "light": 5, "speed": 0, "font2": f1, "justify": 0, } menu5 = { "menu": ["SERVER", "CLIENT"], "pos": (50, 250), "color1": (0, 0, 0), "light": 5, "speed": 0, "font1": f1, "font2": f, "justify": 0, } menus = (menu1, menu2, menu4, menu5) playlist = [menu1, menu2, menu4, menu5] resp = "re-show" while resp == "re-show": resp = menu(**menu1)[0] if resp == "ABOUT": webbrowser.open("http://www.google.com") display.update(scr.blit(bg, r, r)) display.update(scr.blit(f2.render("JMI-CS3rd", 1, (200, 200, 200)), (200, 450))) display.update(scr.blit(f2.render("jmi.ac.in", 1, (200, 200, 200)), (205, 470))) display.update(scr.blit(f2.render("comfortably numb", 1, (200, 200, 200)), (235, 490))) # scr.blit(background_main,(0,0)) display.update(scr.blit(f.render("***ABOUT***", 1, (255, 255, 255)), (200, 120))) resp = menu(**menu4)[0] if resp == "BACK": scr.blit(background_main, (0, 0)) display.update(scr.blit(f.render("Snake Game", 1, (255, 255, 255)), (185, 120))) resp = menu(**menu1)[0] if resp == "PLAY": display.update(scr.blit(bg, r, r)) display.update(scr.blit(f.render("PLAY", 1, (255, 255, 255)), (255, 120))) resp = menu(**menu2)[0] # if resp == 'OPTION': # fileopen=open('data/option.csv') if resp == "1 PLAYER": mysnake = singleplayer.Snake() mysnake.run() if resp == "2 PLAYERS VS": mysnake = snake.Snake() mysnake.run() if resp == "2 PLAYERS CO-OP": display.update(scr.blit(bg, r, r)) display.update(scr.blit(f.render("AI", 1, (255, 255, 255)), (30, 120))) resp = menu(**menu3)[0] if resp == "2 PLAYERS NETWORK": display.update(scr.blit(bg, r, r)) display.update(scr.blit(f.render("NETWORK", 1, (255, 255, 255)), (30, 120))) resp = menu(**menu5)[0] if resp == "BACK": scr.blit(background_main, (0, 0)) display.update(scr.blit(f.render("SNAKE GAME", 1, (255, 255, 255)), (185, 120))) resp = menu(**menu1)[0] if resp == "CLIENT": import input myinput = input.input() myinput.runclient() # import clientside # myclient=clientside.Snake() # myclient.run() if resp == "SERVER": import input myinput = input.input() myinput.runserver() # import serverside # myclient=serverside.Snake() # myclient.run() if resp == "AI-1": fi1 = open("data/ai.txt", "w") fi1.write("1") fi1.close() import AI mysnake = AI.Snake() mysnake.run() if resp == "AI-2": fi2 = open("data/ai.txt", "w") fi2.write("2") fi2.close() import AI mysnake = AI.Snake() mysnake.run()
r"^([a-z0-9]+) RSHIFT (\d+) -> ([a-z]+)$": OP_RSHIFT, r"^NOT ([a-z0-9]+)() -> ([a-z0-9]+)$": OP_NOT, } def parse(s): for command, f in commands.items(): search = regex.search(command, s) if search: return f, search.groups() print(s) raise RuntimeError while True: for x in input.input(7, 2015): # print (x) f, params = parse(x) # print (f, params) try: f(*params) ## part 2: data['b'] = 16076 except KeyError: # print("Skipping ", f, params) continue try: print(data['a']) exit() except KeyError: pass
def loadNetwork(self, ifile): """ Sets up the network topology and objects. Args: input: string; input file name; """ network_specs = input(ifile) self.realTimeGraph = RealTimeGraph(self.duration, self.interval, self.graph_type, network_specs['Hosts'], len(network_specs['Links']), len(network_specs['Flows'])) for _ in range(network_specs['Hosts']): self.hosts.append(Host(self, self.newId())) for _ in range(network_specs['Routers']): self.routers.append(Router(self, self.newId(), self.update_int)) # Initialize static routing if network_specs['Routers']: objs = self.routers + self.hosts routing = { obj.get_id(): { obj2.get_id(): None for obj2 in objs} for obj in objs} dist = { obj.get_id(): { obj2.get_id(): -1 for obj2 in objs} for obj in objs} for rate, delay, buffer_size, node1, node2 in network_specs['Links']: # fetch endpoints endpoints = [] h, r = None, None # note this id here should start with 0 for type, id in [node1, node2]: id -= 1 if type == 'H': endpoints.append(self.hosts[id]) h = self.hosts[id] else: endpoints.append(self.routers[id]) r = self.routers[id] # create link obj link = Link(self, self.newId(), rate, delay, buffer_size, endpoints) # add link to the nodes for node in endpoints: node.add_link(link) if h is not None and r is not None: r.add_host(h) self.links.append(link) for data_amt, flow_start, src, dest, cc in network_specs['Flows']: src -= 1 dest -= 1 src_host = self.hosts[src] dest_host = self.hosts[dest] sending_flow = SendingFlow(self, self.newId(), data_amt, flow_start, dest_host.get_id(), src_host, cc) self.flows.append(sending_flow) src_host.add_flow(sending_flow)
import os import sys import tensorflow as tf import numpy as np import scipy.io import scipy.misc from tkinter import * import pandas as pd from input import input style_layer = ["conv1_1", "conv2_1", "conv3_1", "conv4_1", "conv5_1"] #intializing output directory im_path, fest = input() output_dir = "./output" image_for_style = "./style_images/" + fest + ".jpg" content_image = im_path image_width = 800 image_height = 600 color_channels = 3 beta = 5 #less content ratio alpha = 200 #or else try 200 l = 1e4 mean_values = np.array([123.68, 116.779, 103.939]).reshape((1, 1, 1, 3)) def preprocess_input(path): image = scipy.misc.imread(path)
def test_input(self): self.assertEqual(input.input(1, 4, 'x**3 + x**2 + x + 1'), True)
def h_crossover(parent1, parent2, eq, ieq, d_restrictions): #chech if we get feasible child num_variables = len(parent1) r = random() child = [ 0.0 for _ in xrange(num_variables)] for i in xrange(num_variables): child[i] = r * (parent2[i] - parent1[i]) + parent2[i] return child if __name__ == "__main__": #initial population data = [] data = input(argv[1]) num_variables = data[6] eq = data[1] ieq = data[3] d_restrictions = data[5] pop_size = 20 population = initialize_population(argv[2] + ' ' + argv[3], pop_size) a_offsprings = a_crossover(population[0], population[1]) print "arithmetical offsprings", a_offsprings s_offsprings = s_crossover(population[0], population[1], 1, eq, ieq, d_restrictions) print "simple offsprings", s_offsprings h_offsprings = h_crossover(population[0], population[1], eq, ieq, d_restrictions) print "heuristics offsprings", h_offsprings
import input real = input.input(2, 2015) def box(l, w, h): return 2 * l * w + 2 * w * h + 2 * h * l + smallest_side(l, w, h) def ribbon(l, w, h): return smallest_peri(l, w, h) + l * w * h def smallest_peri(l, w, h): a, b, c = sorted([l, w, h]) return a + b + a + b def smallest_side(l, w, h): a, b, c = sorted([l, w, h]) return a * b assert box(2, 3, 4) == 58 assert box(1, 1, 10) == 43 c = 0 for i in real: str_dims = i.split('x') dims = [int(x) for x in str_dims] c = c + box(dims[0], dims[1], dims[2])
import input while True: print(input.input()) #test
def on_init(self): # (from: on_execute) # Puts pygame window in the middle os.environ['SDL_VIDEO_CENTERED'] = '1' # Check that Mixer was initiated. on_execute will fail/stop the program otherwise. if self.initpygame() is False: return False # Initialize Game Window # (Not Used Yet!) Video Display Object: If called before pygame.display.set_mode() can provide user's screen resolution # initialize window self._infoObject = pygame.display.Info() # Map Image in Background (Needs to be rendered) # Window Size resolutionx = 1000 resolutiony = 800 self._display_surfrender = pygame.Surface( (resolutionx, resolutiony)) # Map 800,600 self._display_surf = pygame.display.set_mode((800, 600), pygame.RESIZABLE) # CWD path for images self._cwdpath = os.getcwd() pygame.display.set_caption("Scuffed StarCraft") pygame.display.set_icon( pygame.image.load(os.path.join(self._cwdpath, "Images", "sc2.png"))) # Ignore cursor for now need to figure out a way to do it on the OS probably because it lags # pygame.mouse.set_visible(False) pygame.event.set_grab(True) # Initialize FPS value (see .handlefps()) # initialize other values self._lasttime = 0 self._input = input.input() self._playerinfo = playerinfo.playerinfo() # Initialize Map Dimensions and Camera Set-Up self.map = Map.Map(resolutionx, resolutiony) # Initialize Overlay (UI) self.overlay = Overlay.Overlay() self.overlay.load_media(self._cwdpath) # Initialize Cursor/Map/Sounds and other general media self.load_media() # Initialize Troops and smaller entities self.load_entities() # Initialize Map resources self.load_resources() self.load_buildings() # Initialize Graph for Map self.load_Graph() # GAME OPTIONS self.overlay_enable = True # Toggles overlay self.worldgraph_editmode = False # Toggles being able to edit the world graph nodes self.worldgraph_render = False # Toggles being able to see the world graph self.bspgraph_render = False # Toggles being able to see the bsp graph self.clickcount = 0 self.clickpoints = [] pygame.mixer.music.load( os.path.join(self._cwdpath, "Sounds", "title_music.wav")) pygame.mixer.music.set_volume(0.5) pygame.mixer.music.play(-1)
def input(self, action_url, option='none'): dtmf = input(action_url, option) self.action.append(dtmf)
sample = """939 7,13,x,x,59,x,31,19""".strip() import input import math from functools import reduce def fake_int(s): if s == "x": return -1 else: return int(s) data_raw = input.input(13) data_raw = input.input(sample) timestamp = int(data_raw[0]) old_nums = list(int(t) for t in data_raw[1].split(",") if t != "x") nums = list(fake_int(t) for t in data_raw[1].split(",")) best_wait = 99999999 best_bus = None #for num in nums: # missed_by = timestamp % num # if missed_by != 0: # time_to_next = num - missed_by # else: # time_to_next = 0 # if time_to_next < best_wait:
if "lca" in a[0]: lca_flag = 1 elif "pca" in a[0]: pca_flag = 1 if "svm" in a[1]: svm_flag = 1 elif "adaboo" in a[1]: adaboo_flag = 1 elif "rf" in a[1]: rf_flag = 1 elif "nb" in a[1]: nb_flag = 1 elif "bagging" in a[1]: bagging_flag = 1 training_matrix = input.input("5k_spring_2016_training_dataset.txt", 15000, 40293) testing_matrix = input.input("5k_spring_2016_testing_dataset.txt", 15000, 40293) training_label = input.label("5k_spring_2016_label_training.txt", 15000) training_matrix, testing_matrix, combine = input_preprocess(training_matrix, testing_matrix) #Getting tf-idf of the matrix tf_idf_combine = tf_idf.tf_idf(combine, combine) tf_idf_training_matrix = tf_idf.tf_idf(combine, training_matrix) tf_idf_testing_matrix = tf_idf.tf_idf(combine, testing_matrix) if (lca_flag): print("Doing LCA") train = lca(tf_idf_combine, tf_idf_training_matrix) test = lca(tf_idf_combine, tf_idf_testing_matrix) elif (pca_flag): print("Doing PCA")
sample = """ London to Dublin = 464 London to Belfast = 518 Dublin to Belfast = 141 """ # > 674 import input import regex from itertools import permutations data = {} for row in input.input(9, 2015): c1, c2, dist = regex.search(r"^(\w+) to (\w+) = (\d+)$", row).groups() data[(c1, c2)] = int(dist) data[(c2, c1)] = int(dist) cities = set() for d in data: cities.add(d[0]) mindist = -1 minpath = None for perm in permutations(cities): dist = 0 for i in range(len(cities) - 1): print(perm[i], perm[i + 1]) dist = dist + data[(perm[i], perm[i + 1])] print(dist) if dist > mindist: minpath = perm
class: 0-1 or 4-19 row: 0-5 or 8-19 seat: 0-13 or 16-19 your ticket: 11,12,13 nearby tickets: 3,9,18 15,1,5 5,14,9 """.strip() import input sample = input.input(sample_2) real = input.input(16) data = real nearby_placeholder = data.index("nearby tickets:") tickets = [[int(y) for y in x.split(',')] for x in data[nearby_placeholder + 1:]] your_placeholder = data.index("your ticket:") your_ticket = [int(y) for y in data[your_placeholder + 1].split(',')] class_end = data.index("") raw_classes = data[:class_end] classes = {} for cat in raw_classes: name, _, valid_text = cat.partition(": ")
#!/usr/bin/python3 from input import input from input import tokens import re sum = 0 bop = list() s = input() t = tokens() all = set() for i in tokens(): r = t[i] for rr in r: all |= set( [s[:m.start()] + rr + s[m.end():] for m in re.finditer(i, s)]) print("Answer to 1: ", len(all))
def loadNetwork(self, ifile): """ Sets up the network topology and objects. Args: input: string; input file name; """ network_specs = input(ifile) self.realTimeGraph = RealTimeGraph(self.duration, self.interval, self.graph_type, network_specs['Hosts'], len(network_specs['Links']), len(network_specs['Flows'])) for _ in range(network_specs['Hosts']): self.hosts.append(Host(self, self.newId())) for _ in range(network_specs['Routers']): self.routers.append(Router(self, self.newId(), self.update_int)) # Initialize static routing if network_specs['Routers']: objs = self.routers + self.hosts routing = { obj.get_id(): {obj2.get_id(): None for obj2 in objs} for obj in objs } dist = { obj.get_id(): {obj2.get_id(): -1 for obj2 in objs} for obj in objs } for rate, delay, buffer_size, node1, node2 in network_specs['Links']: # fetch endpoints endpoints = [] h, r = None, None # note this id here should start with 0 for type, id in [node1, node2]: id -= 1 if type == 'H': endpoints.append(self.hosts[id]) h = self.hosts[id] else: endpoints.append(self.routers[id]) r = self.routers[id] # create link obj link = Link(self, self.newId(), rate, delay, buffer_size, endpoints) # add link to the nodes for node in endpoints: node.add_link(link) if h is not None and r is not None: r.add_host(h) self.links.append(link) for data_amt, flow_start, src, dest, cc in network_specs['Flows']: src -= 1 dest -= 1 src_host = self.hosts[src] dest_host = self.hosts[dest] sending_flow = SendingFlow(self, self.newId(), data_amt, flow_start, dest_host.get_id(), src_host, cc) self.flows.append(sending_flow) src_host.add_flow(sending_flow)
dotted black bags contain no other bags. """.strip() sample_2 = """ shiny gold bags contain 2 dark red bags. dark red bags contain 2 dark orange bags. dark orange bags contain 2 dark yellow bags. dark yellow bags contain 2 dark green bags. dark green bags contain 2 dark blue bags. dark blue bags contain 2 dark violet bags. dark violet bags contain no other bags. """ import input import regex bag_lines = input.input(sample) bag_lines = input.input(7) def parse_bag(s): outer, _, inners = s.partition(" contain ") outer = outer.replace(" bags", "") inner_options = [] for bag in inners.split(", "): if bag == "no other bags.": continue num, _, descr = bag.partition(" ") num = int(num) descr = regex.sub(" bags?\.?", "", descr) inner_options.append([descr, num]) return [outer, inner_options]
train_step = tf.train.AdamOptimizer(0.005).minimize(Loss) correct_prediction = tf.equal(tf.arg_max(OutputLayer, 1), tf.arg_max(Y_Label, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) # save_path = "./model/model_1.ckpt" # saver.restore(sess, save_path) for step in range(10000): train_images, train_labels = input.input('train', 30) sess.run(train_step, feed_dict={ X: train_images, Y_Label: train_labels }) if step % 10 == 0: eval_images, eval_labels = input.input('eval', 20) print( step, sess.run(accuracy, feed_dict={ X: eval_images, Y_Label: eval_labels }))
import input import regex import math sample = """ 1 + 2 * 3 + 4 * 5 + 6 1 + (2 * 3) + (4 * (5 + 6)) 2 * 3 + (4 * 5) 5 + (8 * 3 + 9 + 3 * 4 * 3) 5 * 9 * (7 * 3 * 3 + 9 * 3 + (8 + 6 * 4)) ((2 + 4 * 9) * (6 + 9 * 8 + 6) + 6) + 2 + 4 * 2 """.strip() data = input.input(sample) data = input.input(18) def unadd(math): math = math.replace(" ", "") while True: s = regex.search(r"(\d+\+\d+)", math) if not s: break pre, post = s.span() new_math = math[pre:post] value = calc(new_math) math = math[:pre] + str(value) + math[post:] return math def unbracket(math): s = regex.search(r"(\([^)(]+\))", math)
from check import * import subprocess as sp import time import tty import sys import os colorama.init() if __name__ == "__main__": # disabling buffering so don't have to press enter orig_settings = termios.tcgetattr(sys.stdin) tty.setcbreak(sys.stdin) player = Person(1, world_y) bossenemy = BossEnemy((world_x + 1) * frames - 2, world_y) input = input() input.hide_cursor() info = "SCORE = " + str(player.get_score()) + " LIVES = " + str( player.get_lives()) + " TIME LEFT= " + str(player.get_time()) player.change_info(info) game_map = scenery(player, rows, columns, frames) start_time = time.time() offset = 0 bullets = [] global_time = time.time() gtime = time.time() while (1): prev_life = player.get_lives() if bossenemy.get_lives() <= 0 and player.get_lives( ) != 0 and player.get_time() != 0:
"""7 FB -> 128 rows 3 LR -> 8 cols seat id = row*8+col""" import input passes = input.input(5, 2020) def parse_pass(s): s = s.replace("F", "0") s = s.replace("B", "1") s = s.replace("L", "0") s = s.replace("R", "1") row = int(s[:7], 2) col = int(s[7:], 2) return (row * 8 + col) hi = 0 lo = 9999 seats = [] for bpass in passes: seat = parse_pass(bpass) seats.append(seat) hi = max(hi, seat) lo = min(lo, seat) for i in range(lo, hi): if i not in seats:
# not sure what this program is doing at the end, but it seems to give the right answer... import input import regex real = input.input(19, 2015) sample = input.input(""" H => HO H => OH O => HH HOH """) irreducible = set() raw = real molecule = raw[-1] trimmed = raw[:-2] replacements = [regex.search(r'(\w+) => (\w+)', s).groups() for s in trimmed] score = 9999 def simplify(molecule, depth=0): global score depth = depth + 1 new_molecules = set() for replacement in replacements: targets = regex.finditer(replacement[1], molecule) for target in targets: prefix = molecule[:target.span()[0]] postfix = molecule[target.span()[1]:] new_molecule = prefix + replacement[0] + postfix
def runm(self): time.Clock() from os.path import dirname,join here = dirname(__file__) scr = display.set_mode((600,560)) print(menu.__doc__) f = font.Font(join('data/FEASFBRG.ttf'),45) f1 = font.Font(join('data/FEASFBRG.ttf'),25) f2 = font.Font(join('data/FEASFBRG.ttf'),15)#'data/321impact.ttf' mainmenu = f.render('ANGRY SNAKES',1,(255,255,255)) r = mainmenu.get_rect() r.centerx,r.top = 300,120 #scr.blit(image.load(join('data/bg.png')),(0,0)) if time.get_ticks()&1 else scr.fill(-1) background_main = image.load('data/bg.png').convert() scr.blit(background_main,(0,0)) bg = scr.copy() scr.blit(mainmenu,r) display.flip() menu1 = {"menu":['PLAY','ABOUT','EXIT'],"font1":f1,"pos":'center',"color1":(154,180,61),"light":6,"speed":200,"lag":20} menu2 = {"menu":['1 PLAYER','2 PLAYERS VS' ,'2 PLAYERS CO-OP','2 PLAYERS NETWORK','BACK'],"font1":f1,"font2":f,"pos":'center',"color1":(154,180,61),"light":5,"speed":200,"lag":20}#"pos":'center',"color1":(50,100,150),"light":5,"speed":0,"font1":f1,"font2":f,"justify":0} menu3 = {"menu":['AI-1','AI-2'],"pos":(50,250),"color1":(154,180,61),"light":5,"speed":0,"font1":f1,"font2":f,"justify":0} menu4 = {"menu":['BACK'],"pos":(20,450),"color1":(154,180,61),"light":5,"speed":0,"font2":f1,"justify":0} menu5 = {"menu":['SERVER','CLIENT'],"pos":(50,250),"color1":(154,180,61),"light":5,"speed":0,"font1":f1,"font2":f,"justify":0} menus = (menu1,menu2,menu4,menu5) playlist = [menu1,menu2,menu4,menu5] resp = "re-show" while resp == "re-show": resp = menu(**menu1)[0] if resp == 'ABOUT': webbrowser.open("http://194.225.238.146/~kharazi/") display.update(scr.blit(bg,r,r)) display.update(scr.blit(f2.render('@author: vahid kharazi',1,(200,200,200)),(200,450))) display.update(scr.blit(f2.render('*****@*****.**',1,(200,200,200)),(205,470))) display.update(scr.blit(f2.render('Winter 1390',1,(200,200,200)),(235,490))) # scr.blit(background_main,(0,0)) display.update(scr.blit(f.render('***ABOUT***',1,(255,255,255)),(200,120))) resp = menu(**menu4)[0] if resp == 'BACK': scr.blit(background_main,(0,0)) display.update(scr.blit(f.render('ANGRY SNAKES',1,(255,255,255)),(185,120))) resp = menu(**menu1)[0] if resp == 'PLAY': display.update(scr.blit(bg,r,r)) display.update(scr.blit(f.render('PLAY',1,(255,255,255)),(255,120))) resp = menu(**menu2)[0] # if resp == 'OPTION': # fileopen=open('data/option.csv') if resp == '1 PLAYER': mysnake = singleplayer.Snake() mysnake.run() if resp == '2 PLAYERS VS': mysnake = snake.Snake() mysnake.run() if resp == '2 PLAYERS CO-OP': display.update(scr.blit(bg,r,r)) display.update(scr.blit(f.render('AI',1,(255,255,255)),(30,120))) resp = menu(**menu3)[0] if resp == '2 PLAYERS NETWORK': display.update(scr.blit(bg,r,r)) display.update(scr.blit(f.render('NETWORK',1,(255,255,255)),(30,120))) resp = menu(**menu5)[0] if resp == 'BACK': scr.blit(background_main,(0,0)) display.update(scr.blit(f.render('ANGRY SNAKES',1,(255,255,255)),(185,120))) resp = menu(**menu1)[0] if resp == 'CLIENT': import input myinput = input.input() myinput.runclient() # import clientside # myclient=clientside.Snake() # myclient.run() if resp == 'SERVER': import input myinput = input.input() myinput.runserver() # import serverside # myclient=serverside.Snake() # myclient.run() if resp == 'AI-1': fi1=open('data/ai.txt','w') fi1.write('1') fi1.close() import AI mysnake = AI.Snake() mysnake.run() if resp == 'AI-2': fi2=open('data/ai.txt','w') fi2.write('2') fi2.close() import AI mysnake = AI.Snake() mysnake.run()