def execute(gpu, exp_batch, exp_alias): manualSeed = g_conf.SEED torch.cuda.manual_seed(manualSeed) os.environ["CUDA_VISIBLE_DEVICES"] = gpu merge_with_yaml(os.path.join('configs', exp_batch, exp_alias + '.yaml')) set_type_of_process('train') coil_logger.add_message('Loading', {'GPU': gpu}) if not os.path.exists('_output_logs'): os.mkdir('_output_logs') sys.stdout = open(os.path.join( '_output_logs', g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) if monitorer.get_status(exp_batch, exp_alias + '.yaml', g_conf.PROCESS_NAME)[0] == "Finished": return full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"], g_conf.TRAIN_DATASET_NAME) real_dataset = os.path.join(os.environ["COIL_DATASET_PATH"], "FinalRealWorldDataset") #main data loader dataset = CoILDataset(full_dataset, real_dataset, transform=transforms.Compose([transforms.ToTensor() ])) sampler = BatchSequenceSampler( splitter.control_steer_split(dataset.measurements, dataset.meta_data), g_conf.BATCH_SIZE, g_conf.NUMBER_IMAGES_SEQUENCE, g_conf.SEQUENCE_STRIDE) data_loader = torch.utils.data.DataLoader(dataset, batch_sampler=sampler, shuffle=False, num_workers=6, pin_memory=True) #real image dataloader l1weight = g_conf.L1_WEIGHT image_size = tuple([88, 200]) print("Configurations of ", exp_alias) print("GANMODEL_NAME", g_conf.GANMODEL_NAME) print("LOSS_FUNCTION", g_conf.LOSS_FUNCTION) print("TYPE", g_conf.TYPE) print("L1 WEIGHT", g_conf.L1_WEIGHT) optimD = torch.optim.Adam(netD.parameters(), lr=g_conf.LR_D, betas=(0.7, 0.999)) optimG = torch.optim.Adam(netG.parameters(), lr=g_conf.LR_G, betas=(0.7, 0.999)) if g_conf.TYPE == 'task': optimF = torch.optim.Adam(netF.parameters(), lr=g_conf.LEARNING_RATE) Task_Loss = TaskLoss() if g_conf.LOSS_FUNCTION == 'LSGAN': Loss = torch.nn.MSELoss().cuda() elif g_conf.LOSS_FUNCTION == 'NORMAL': Loss = torch.nn.BCELoss().cuda() L1_loss = torch.nn.L1Loss().cuda() iteration = 0 best_loss_iter_F = 0 best_loss_iter_G = 0 best_lossF = 1000000.0 best_lossD = 1000000.0 best_lossG = 1000000.0 accumulated_time = 0 gen_iterations = 0 netG.train() netD.train() netF.train() capture_time = time.time() if not os.path.exists('./imgs_' + exp_alias): os.mkdir('./imgs_' + exp_alias) #TODO put family for losses fake_img_pool = ImagePool(50) for data in data_loader: set_requires_grad(netD, True) set_requires_grad(netF, True) set_requires_grad(netG, True) input_data, float_data, tgt_imgs = data if g_conf.IF_AUG: inputs = augmenter(0, input_data['rgb']) # tgt_imgs = augmenter(0, tgt_imgs) else: inputs = input_data['rgb'].cuda() # tgt_imgs = tgt_imgs.cuda() tgt_imgs = tgt_imgs.cuda() #TODO: make sure the F network does not get optimized by G optim controls = float_data[:, dataset.controls_position(), :] embed, branches = netF(inputs_in, dataset.extract_inputs(float_data).cuda()) print("Branch Outputs:::", branches[0][0]) embed_inputs = embed fake_inputs = netG(embed_inputs.detach()) fake_inputs_in = fake_inputs if iteration % 500 == 0: imgs_to_save = torch.cat((inputs_in[:2] + val, fake_inputs_in[:2]), 0).cpu().data vutils.save_image(imgs_to_save, './imgs_' + exp_alias + '/' + str(iteration) + '_real_and_fake.png', normalize=True) coil_logger.add_image("Images", imgs_to_save, iteration) ##--------------------Discriminator part!!!!!!!!!!-------------------## set_requires_grad(netD, True) set_requires_grad(netF, False) set_requires_grad(netG, False) optimD.zero_grad() ##fake fake_inputs_forD = fake_img_pool.query(fake_inputs.detach()) outputsD_fake_forD = netD(fake_inputs_forD.detach()) labsize = outputsD_fake_forD.size() labels_fake = torch.zeros(labsize) #Fake labels label_fake_noise = torch.rand( labels_fake.size()) * 0.05 - 0.025 #Label smoothing if g_conf.LABSMOOTH == 1: labels_fake = labels_fake + labels_fake_noise labels_fake = Variable(labels_fake).cuda() lossD_fake = Loss(outputsD_fake_forD, labels_fake) ##real outputsD_real = netD(inputs) labsize = outputsD_real.size() labels_real = torch.ones(labsize) #Real labels label_real_noise = torch.rand( labels_real.size()) * 0.05 - 0.025 #Label smoothing if g_conf.LABSMOOTH == 1: labels_real = labels_real + labels_real_noise labels_real = Variable(labels_real).cuda() lossD_real = Loss(outputsD_real, labels_real) #Discriminator updates lossD = (lossD_real + lossD_fake) * 0.5 lossD /= len(inputs) lossD.backward() optimD.step() coil_logger.add_scalar('Total LossD', lossD.data, iteration) coil_logger.add_scalar('Real LossD', lossD_real.data / len(inputs), iteration) coil_logger.add_scalar('Fake LossD', lossD_fake.data / len(inputs), iteration) ##--------------------Generator part!!!!!!!!!!-----------------------## set_requires_grad(netD, False) set_requires_grad(netF, False) set_requires_grad(netG, True) optimG.zero_grad() outputsD_fake_forG = netD(fake_inputs) #Generator updates lossG_adv = Loss(outputsD_fake_forG, labels_real) lossG_smooth = L1_loss(fake_inputs, inputs) lossG = (lossG_adv + l1weight * lossG_smooth) / (1.0 + l1weight) lossG /= len(inputs) print(lossG) lossG.backward() optimG.step() #####Task network updates########################## set_requires_grad(netD, False) set_requires_grad(netF, True) set_requires_grad(netG, False) optimF.zero_grad() lossF = Task_Loss.MSELoss(branches, dataset.extract_targets(float_data).cuda(), controls.cuda(), dataset.extract_inputs(float_data).cuda()) coil_logger.add_scalar('Task Loss', lossF.data, iteration) lossF.backward() optimF.step() coil_logger.add_scalar('Total LossG', lossG.data, iteration) coil_logger.add_scalar('Adv LossG', lossG_adv.data / len(inputs), iteration) coil_logger.add_scalar('Smooth LossG', lossG_smooth.data / len(inputs), iteration) #optimization for one iter done! position = random.randint(0, len(float_data) - 1) if lossD.data < best_lossD: best_lossD = lossD.data.tolist() if lossG.data < best_lossG: best_lossG = lossG.data.tolist() best_loss_iter_G = iteration if lossF.data < best_lossF: best_lossF = lossF.data.tolist() best_loss_iter_F = iteration accumulated_time += time.time() - capture_time capture_time = time.time() print("LossD", lossD.data.tolist(), "LossG", lossG.data.tolist(), "BestLossD", best_lossD, "BestLossG", best_lossG, "LossF", lossF, "BestLossF", best_lossF, "Iteration", iteration, "Best Loss Iteration G", best_loss_iter_G, "Best Loss Iteration F", best_loss_iter_F) coil_logger.add_message( 'Iterating', { 'Iteration': iteration, 'LossD': lossD.data.tolist(), 'LossG': lossG.data.tolist(), 'Images/s': (iteration * g_conf.BATCH_SIZE) / accumulated_time, 'BestLossD': best_lossD, 'BestLossG': best_lossG, 'BestLossIterationG': best_loss_iter_G, 'BestLossF': best_lossF, 'BestLossIterationF': best_loss_iter_F, 'GroundTruth': dataset.extract_targets(float_data)[position].data.tolist(), 'Inputs': dataset.extract_inputs(float_data)[position].data.tolist() }, iteration) if is_ready_to_save(iteration): state = { 'iteration': iteration, 'stateD_dict': netD.state_dict(), 'stateG_dict': netG.state_dict(), 'stateF_dict': netF.state_dict(), 'best_lossD': best_lossD, 'best_lossG': best_lossG, 'total_time': accumulated_time, 'best_loss_iter_G': best_loss_iter_G, 'best_loss_iter_F': best_loss_iter_F } torch.save( state, os.path.join('/datatmp/Experiments/rohitgan/_logs', exp_batch, exp_alias, 'checkpoints', str(iteration) + '.pth')) if iteration == best_loss_iter_G and iteration > 10000: state = { 'iteration': iteration, 'stateD_dict': netD.state_dict(), 'stateG_dict': netG.state_dict(), 'stateF_dict': netF.state_dict(), 'best_lossD': best_lossD, 'best_lossG': best_lossG, 'total_time': accumulated_time, 'best_loss_iter_G': best_loss_iter_G } torch.save( state, os.path.join('/datatmp/Experiments/rohitgan/_logs', exp_batch, exp_alias, 'best_modelG' + '.pth')) if iteration == best_loss_iter_F and iteration > 10000: state = { 'iteration': iteration, 'stateD_dict': netD.state_dict(), 'stateG_dict': netG.state_dict(), 'stateF_dict': netF.state_dict(), 'best_lossD': best_lossD, 'best_lossG': best_lossG, 'best_lossF': best_lossF, 'total_time': accumulated_time, 'best_loss_iter_F': best_loss_iter_F } torch.save( state, os.path.join('/datatmp/Experiments/rohitgan/_logs', exp_batch, exp_alias, 'best_modelF' + '.pth')) iteration += 1
def execute(gpu, exp_batch, exp_alias, json_file_path, suppress_output, encoder_params=None, plot_attentions=False): try: # We set the visible cuda devices os.environ["CUDA_VISIBLE_DEVICES"] = gpu if json_file_path is not None: json_file_name = json_file_path.split('/')[-1].split('.')[-2] else: raise RuntimeError( "You need to define the validation json file path") # At this point the log file with the correct naming is created. merge_with_yaml( os.path.join('configs', exp_batch, exp_alias + '.yaml'), encoder_params) if plot_attentions: set_type_of_process('validation', json_file_name + '_plotAttention') else: set_type_of_process('validation', json_file_name) if not os.path.exists('_output_logs'): os.mkdir('_output_logs') if suppress_output: sys.stdout = open(os.path.join( '_output_logs', exp_alias + '_' + g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) sys.stderr = open(os.path.join( '_output_logs', exp_alias + '_err_' + g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) # We create file for saving validation results summary_file = os.path.join('_logs', exp_batch, g_conf.EXPERIMENT_NAME, g_conf.PROCESS_NAME + '_csv', 'valid_summary_1camera.csv') g_conf.immutable(False) g_conf.DATA_USED = 'central' g_conf.immutable(True) if not os.path.exists(summary_file): csv_outfile = open(summary_file, 'w') csv_outfile.write( "%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s\n" % ('step', 'accumulated_pedestrian_TP', 'accumulated_pedestrian_FP', 'accumulated_pedestrian_FN', 'accumulated_pedestrian_TN', 'accumulated_vehicle_stop_TP', 'accumulated_vehicle_stop_FP', 'accumulated_vehicle_stop_FN', 'accumulated_vehicle_stop_TN', 'accumulated_red_tl_TP', 'accumulated_red_tl_FP', 'accumulated_red_tl_FN', 'accumulated_red_tl_TN', 'MAE_relative_angle')) csv_outfile.close() latest = get_latest_evaluated_checkpoint_2(summary_file) # Define the dataset. This structure is has the __get_item__ redefined in a way # that you can access the HDFILES positions from the root directory as a in a vector. #full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"], dataset_name) augmenter = Augmenter(None) # Definition of the dataset to be used. Preload name is just the validation data name dataset = CoILDataset(transform=augmenter, preload_name=g_conf.PROCESS_NAME + '_' + g_conf.DATA_USED, process_type='validation', vd_json_file_path=json_file_path) print("Loaded Validation dataset") # Creates the sampler, this part is responsible for managing the keys. It divides # all keys depending on the measurements and produces a set of keys for each bach. # The data loader is the multi threaded module from pytorch that release a number of # workers to get all the data. data_loader = torch.utils.data.DataLoader( dataset, batch_size=g_conf.BATCH_SIZE, shuffle=False, num_workers=g_conf.NUMBER_OF_LOADING_WORKERS, pin_memory=True) if g_conf.MODEL_TYPE in ['one-step-affordances']: # one step training, no need to retrain FC layers, we just get the output of encoder model as prediciton model = EncoderModel(g_conf.ENCODER_MODEL_TYPE, g_conf.ENCODER_MODEL_CONFIGURATION) model.cuda() #print(model) elif g_conf.MODEL_TYPE in ['separate-affordances']: model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION, g_conf.ENCODER_MODEL_CONFIGURATION) model.cuda() #print(model) encoder_model = EncoderModel(g_conf.ENCODER_MODEL_TYPE, g_conf.ENCODER_MODEL_CONFIGURATION) encoder_model.cuda() encoder_model.eval() # Here we load the pre-trained encoder (not fine-tunned) if g_conf.FREEZE_ENCODER: if encoder_params is not None: encoder_checkpoint = torch.load( os.path.join( '_logs', encoder_params['encoder_folder'], encoder_params['encoder_exp'], 'checkpoints', str(encoder_params['encoder_checkpoint']) + '.pth')) print( "Encoder model ", str(encoder_params['encoder_checkpoint']), "loaded from ", os.path.join('_logs', encoder_params['encoder_folder'], encoder_params['encoder_exp'], 'checkpoints')) encoder_model.load_state_dict( encoder_checkpoint['state_dict']) encoder_model.eval() for param_ in encoder_model.parameters(): param_.requires_grad = False while not maximun_checkpoint_reach(latest, g_conf.TEST_SCHEDULE): latest = get_next_checkpoint_2(g_conf.TEST_SCHEDULE, summary_file) if os.path.exists( os.path.join('_logs', exp_batch, g_conf.EXPERIMENT_NAME, 'checkpoints', str(latest) + '.pth')): checkpoint = torch.load( os.path.join('_logs', exp_batch, g_conf.EXPERIMENT_NAME, 'checkpoints', str(latest) + '.pth')) checkpoint_iteration = checkpoint['iteration'] model.load_state_dict(checkpoint['state_dict']) print("Validation checkpoint ", checkpoint_iteration) model.eval() for param_ in model.parameters(): param_.requires_grad = False # Here we load the fine-tunned encoder if not g_conf.FREEZE_ENCODER and g_conf.MODEL_TYPE not in [ 'one-step-affordances' ]: encoder_checkpoint = torch.load( os.path.join('_logs', exp_batch, g_conf.EXPERIMENT_NAME, 'checkpoints', str(latest) + '_encoder.pth')) print( "FINE TUNNED encoder model ", str(latest) + '_encoder.pth', "loaded from ", os.path.join('_logs', exp_batch, g_conf.EXPERIMENT_NAME, 'checkpoints')) encoder_model.load_state_dict( encoder_checkpoint['state_dict']) encoder_model.eval() for param_ in encoder_model.parameters(): param_.requires_grad = False accumulated_mae_ra = 0 accumulated_pedestrian_TP = 0 accumulated_pedestrian_TN = 0 accumulated_pedestrian_FN = 0 accumulated_pedestrian_FP = 0 accumulated_red_tl_TP = 0 accumulated_red_tl_TN = 0 accumulated_red_tl_FP = 0 accumulated_red_tl_FN = 0 accumulated_vehicle_stop_TP = 0 accumulated_vehicle_stop_TN = 0 accumulated_vehicle_stop_FP = 0 accumulated_vehicle_stop_FN = 0 iteration_on_checkpoint = 0 for data in data_loader: if g_conf.MODEL_TYPE in ['one-step-affordances']: c_output, r_output, layers = model.forward_outputs( torch.squeeze(data['rgb'].cuda()), dataset.extract_inputs(data).cuda(), dataset.extract_commands(data).cuda()) elif g_conf.MODEL_TYPE in ['separate-affordances']: if g_conf.ENCODER_MODEL_TYPE in [ 'action_prediction', 'stdim', 'ETEDIM', 'FIMBC', 'one-step-affordances' ]: e, layers = encoder_model.forward_encoder( torch.squeeze(data['rgb'].cuda()), dataset.extract_inputs(data).cuda(), torch.squeeze( dataset.extract_commands(data).cuda())) c_output, r_output = model.forward_test(e) elif g_conf.ENCODER_MODEL_TYPE in [ 'ETE', 'ETE_inverse_model', 'forward', 'ETE_stdim' ]: e, layers = encoder_model.forward_encoder( torch.squeeze(data['rgb'].cuda()), dataset.extract_inputs(data).cuda(), torch.squeeze( dataset.extract_commands(data).cuda())) c_output, r_output = model.forward_test(e) if plot_attentions: attentions_path = os.path.join( '_logs', exp_batch, g_conf.EXPERIMENT_NAME, g_conf.PROCESS_NAME + '_attentions_' + str(latest)) write_attentions(torch.squeeze(data['rgb']), layers, iteration_on_checkpoint, attentions_path) # Accurancy = (TP+TN)/(TP+TN+FP+FN) # F1-score = 2*TP / (2*TP + FN + FP) classification_gt = dataset.extract_affordances_targets( data, 'classification') regression_gt = dataset.extract_affordances_targets( data, 'regression') TP = 0 FN = 0 FP = 0 TN = 0 for i in range(classification_gt.shape[0]): if classification_gt[i, 0] == ( c_output[0][i, 0] < c_output[0][i, 1]).type( torch.FloatTensor) == 1: TP += 1 elif classification_gt[ i, 0] == 1 and classification_gt[i, 0] != ( c_output[0][i, 0] < c_output[0][i, 1]).type(torch.FloatTensor): FN += 1 elif classification_gt[ i, 0] == 0 and classification_gt[i, 0] != ( c_output[0][i, 0] < c_output[0][i, 1]).type(torch.FloatTensor): FP += 1 if classification_gt[i, 0] == ( c_output[0][i, 0] < c_output[0][i, 1]).type( torch.FloatTensor) == 0: TN += 1 accumulated_pedestrian_TP += TP accumulated_pedestrian_TN += TN accumulated_pedestrian_FP += FP accumulated_pedestrian_FN += FN TP = 0 FN = 0 FP = 0 TN = 0 for i in range(classification_gt.shape[0]): if classification_gt[i, 1] == ( c_output[1][i, 0] < c_output[1][i, 1]).type( torch.FloatTensor) == 1: TP += 1 elif classification_gt[ i, 1] == 1 and classification_gt[i, 1] != ( c_output[1][i, 0] < c_output[1][i, 1]).type(torch.FloatTensor): FN += 1 elif classification_gt[ i, 1] == 0 and classification_gt[i, 1] != ( c_output[1][i, 0] < c_output[1][i, 1]).type(torch.FloatTensor): FP += 1 if classification_gt[i, 1] == ( c_output[1][i, 0] < c_output[1][i, 1]).type( torch.FloatTensor) == 0: TN += 1 accumulated_red_tl_TP += TP accumulated_red_tl_TN += TN accumulated_red_tl_FP += FP accumulated_red_tl_FN += FN TP = 0 FN = 0 FP = 0 TN = 0 for i in range(classification_gt.shape[0]): if classification_gt[i, 2] == ( c_output[2][i, 0] < c_output[2][i, 1]).type( torch.FloatTensor) == 1: TP += 1 elif classification_gt[i, 2] == 1 and classification_gt[i, 2] !=\ (c_output[2][i, 0] < c_output[2][i, 1]).type(torch.FloatTensor): FN += 1 elif classification_gt[i, 2] == 0 and classification_gt[i, 2] !=\ (c_output[2][i, 0] < c_output[2][i, 1]).type(torch.FloatTensor): FP += 1 if classification_gt[i, 2] == ( c_output[2][i, 0] < c_output[2][i, 1]).type( torch.FloatTensor) == 0: TN += 1 accumulated_vehicle_stop_TP += TP accumulated_vehicle_stop_TN += TN accumulated_vehicle_stop_FP += FP accumulated_vehicle_stop_FN += FN # if the data was normalized during training, we need to transform it to its unit write_regular_output(checkpoint_iteration, torch.squeeze(r_output[0]), regression_gt[:, 0]) mae_ra = torch.abs(regression_gt[:, 0] - torch.squeeze(r_output[0]).type(torch.FloatTensor)).\ numpy() accumulated_mae_ra += np.sum(mae_ra) if iteration_on_checkpoint % 100 == 0: print( "Validation iteration: %d [%d/%d)] on Checkpoint %d " % (iteration_on_checkpoint, iteration_on_checkpoint, len(data_loader), checkpoint_iteration)) iteration_on_checkpoint += 1 # Here also need a better analysis. TODO divide into curve and other things MAE_relative_angle = accumulated_mae_ra / (len(dataset)) csv_outfile = open(summary_file, 'a') csv_outfile.write( "%s, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f" % (checkpoint_iteration, accumulated_pedestrian_TP, accumulated_pedestrian_FP, accumulated_pedestrian_FN, accumulated_pedestrian_TN, accumulated_vehicle_stop_TP, accumulated_vehicle_stop_FP, accumulated_vehicle_stop_FN, accumulated_vehicle_stop_TN, accumulated_red_tl_TP, accumulated_red_tl_FP, accumulated_red_tl_FN, accumulated_red_tl_TN, MAE_relative_angle)) csv_outfile.write("\n") csv_outfile.close() else: print('The checkpoint you want to validate is not yet ready ', str(latest)) coil_logger.add_message('Finished', {}) print('VALIDATION FINISHED !!') print(' Validation results saved in ==> ', summary_file) except KeyboardInterrupt: coil_logger.add_message('Error', {'Message': 'Killed By User'}) # We erase the output that was unfinished due to some process stop. if latest is not None: coil_logger.erase_csv(latest) except RuntimeError as e: if latest is not None: coil_logger.erase_csv(latest) coil_logger.add_message('Error', {'Message': str(e)}) except: traceback.print_exc() coil_logger.add_message('Error', {'Message': 'Something Happened'}) # We erase the output that was unfinished due to some process stop. if latest is not None: coil_logger.erase_csv(latest)
def execute(gpu, exp_batch, exp_alias, dataset_name): # We set the visible cuda devices os.environ["CUDA_VISIBLE_DEVICES"] = '0' # At this point the log file with the correct naming is created. merge_with_yaml(os.path.join('configs', exp_batch, exp_alias + '.yaml')) set_type_of_process('validation', dataset_name) if not os.path.exists('_output_logs'): os.mkdir('_output_logs') sys.stdout = open(os.path.join( '_output_logs', g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) if monitorer.get_status(exp_batch, exp_alias + '.yaml', g_conf.PROCESS_NAME)[0] == "Finished": # TODO: print some cool summary or not ? return #Define the dataset. This structure is has the __get_item__ redefined in a way #that you can access the HDFILES positions from the root directory as a in a vector. full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"], dataset_name) print(full_dataset) dataset = CoILDataset(full_dataset, transform=transforms.Compose([transforms.ToTensor() ])) # Creates the sampler, this part is responsible for managing the keys. It divides # all keys depending on the measurements and produces a set of keys for each bach. # The data loader is the multi threaded module from pytorch that release a number of # workers to get all the data. # TODO: batch size an number of workers go to some configuration file data_loader = torch.utils.data.DataLoader(dataset, batch_size=120, shuffle=False, num_workers=12, pin_memory=True) # TODO: here there is clearly a posibility to make a cool "conditioning" system. model = CoILModel(g_conf.MODEL_NAME) model.cuda() model.eval() criterion = Loss() latest = get_latest_evaluated_checkpoint() if latest is None: # When nothing was tested, get latest returns none, we fix that. latest = 0 latest = 200000 best_loss = 1000.0 best_error = 1000.0 best_loss_iter = 0 best_error_iter = 0 print(dataset.meta_data[0][0]) for k in dataset.meta_data: k[0] = str(k[0], 'utf-8') print(dataset.meta_data[0][0]) cpts = glob.glob( '/home-local/rohitrishabh/coil_20-06/_logs/eccv/experiment_1/checkpoints/*.pth' ) # while not maximun_checkpoint_reach(latest, g_conf.TEST_SCHEDULE): for ckpt in cpts: # if is_next_checkpoint_ready(g_conf.TEST_SCHEDULE): # latest = get_next_checkpoint(g_conf.TEST_SCHEDULE) latest = int(ckpt[-10:-4]) # checkpoint = torch.load(os.path.join('_logs', exp_batch, exp_alias # , 'checkpoints', str(latest) + '.pth')) checkpoint = torch.load(ckpt) checkpoint_iteration = checkpoint['iteration'] print("Validation loaded ", checkpoint_iteration) accumulated_loss = 0.0 accumulated_error = 0.0 iteration_on_checkpoint = 0 for data in data_loader: input_data, float_data = data control_position = np.where( dataset.meta_data[:, 0] == 'control')[0][0] speed_position = np.where( dataset.meta_data[:, 0] == 'speed_module')[0][0] # print (torch.squeeze(input_data['rgb']).shape) # print (control_position) # print (speed_position) # Obs : Maybe we could also check for other branches ?? output = model.forward_branch( torch.squeeze(input_data['rgb']).cuda(), float_data[:, speed_position, :].cuda(), float_data[:, control_position, :].cuda()) for i in range(input_data['rgb'].shape[0]): coil_logger.write_on_csv( checkpoint_iteration, [output[i][0], output[i][1], output[i][2]]) # TODO: Change this a functional standard using the loss functions. loss = torch.mean( (output - dataset.extract_targets(float_data).cuda())**2).data.tolist() mean_error = torch.mean( torch.abs( output - dataset.extract_targets(float_data).cuda())).data.tolist() accumulated_error += mean_error accumulated_loss += loss error = torch.abs(output - dataset.extract_targets(float_data).cuda()) # Log a random position position = random.randint(0, len(float_data) - 1) #print (output[position].data.tolist()) coil_logger.add_message( 'Iterating in Validation', { 'Checkpoint': latest, 'Iteration': (str(iteration_on_checkpoint * 120) + '/' + str(len(dataset))), 'MeanError': mean_error, 'Loss': loss, 'Output': output[position].data.tolist(), 'GroundTruth': dataset.extract_targets(float_data) [position].data.tolist(), 'Error': error[position].data.tolist(), 'Inputs': dataset.extract_inputs(float_data)[position].data.tolist() }, latest) iteration_on_checkpoint += 1 checkpoint_average_loss = accumulated_loss / len(dataset) checkpoint_average_error = accumulated_error / len(dataset) coil_logger.add_scalar('Loss', checkpoint_average_loss, latest) coil_logger.add_scalar('Error', checkpoint_average_error, latest) print('Loss: ', checkpoint_average_loss, "----Error: ", checkpoint_average_error) if checkpoint_average_loss < best_loss: best_loss = checkpoint_average_loss best_loss_iter = latest state = { 'state_dict': model.state_dict(), 'best_loss': best_loss, 'best_loss_iter': best_loss_iter } # TODO : maybe already summarize the best model ??? torch.save( state, os.path.join('_logs', exp_batch, exp_alias, 'best_model_l2' + '.pth')) if checkpoint_average_error < best_error: best_error = checkpoint_average_error best_error_iter = latest state = { 'state_dict': model.state_dict(), 'best_error': best_error, 'best_error_iter': best_error_iter } # TODO : maybe already summarize the best model ??? torch.save( state, os.path.join('_logs', exp_batch, exp_alias, 'best_model_l1' + '.pth')) print('Best Loss: ', best_loss, "Checkpoint", best_loss_iter) print('Best Error: ', best_error, "Checkpoint", best_error_iter) coil_logger.add_message( 'Iterating in Validation', { 'Summary': { 'Error': checkpoint_average_error, 'Loss': checkpoint_average_loss, 'BestError': best_error, 'BestLoss': best_loss, 'BestLossCheckpoint': best_loss_iter, 'BestErrorCheckpoint': best_error_iter }, 'Checkpoint': latest })
def execute(gpu, exp_batch, exp_alias, state_dict, suppress_output=True, number_of_workers=12): """ The main training function. This functions loads the latest checkpoint for a given, exp_batch (folder) and exp_alias (experiment configuration). With this checkpoint it starts from the beginning or continue some training. Args: gpu: The GPU number exp_batch: the folder with the experiments exp_alias: the alias, experiment name suppress_output: if the output are going to be saved on a file number_of_workers: the number of threads used for data loading Returns: None """ try: # We set the visible cuda devices to select the GPU os.environ["CUDA_VISIBLE_DEVICES"] = gpu g_conf.VARIABLE_WEIGHT = {} # At this point the log file with the correct naming is created. # You merge the yaml file with the global configuration structure. merge_with_yaml(os.path.join('configs', exp_batch, exp_alias + '.yaml')) set_type_of_process('train') # Set the process into loading status. coil_logger.add_message('Loading', {'GPU': gpu}) # Put the output to a separate file if it is the case if suppress_output: if not os.path.exists('_output_logs'): os.mkdir('_output_logs') sys.stdout = open(os.path.join( '_output_logs', exp_alias + '_' + g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) sys.stderr = open(os.path.join( '_output_logs', exp_alias + '_err_' + g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) if coil_logger.check_finish('train'): coil_logger.add_message('Finished', {}) return # Preload option if g_conf.PRELOAD_MODEL_ALIAS is not None: checkpoint = torch.load( os.path.join('_logs', g_conf.PRELOAD_MODEL_BATCH, g_conf.PRELOAD_MODEL_ALIAS, 'checkpoints', str(g_conf.PRELOAD_MODEL_CHECKPOINT) + '.pth')) # Get the latest checkpoint to be loaded # returns none if there are no checkpoints saved for this model checkpoint_file = get_latest_saved_checkpoint() if checkpoint_file is not None: checkpoint = torch.load( os.path.join('_logs', exp_batch, exp_alias, 'checkpoints', str(get_latest_saved_checkpoint()))) iteration = checkpoint['iteration'] best_loss = checkpoint['best_loss'] best_loss_iter = checkpoint['best_loss_iter'] else: iteration = 0 best_loss = 10000.0 best_loss_iter = 0 # Define the dataset. This structure is has the __get_item__ redefined in a way # that you can access the positions from the root directory as a in a vector. full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"], g_conf.TRAIN_DATASET_NAME) # By instantiating the augmenter we get a callable that augment images and transform them # into tensors. augmenter = Augmenter(g_conf.AUGMENTATION) # Instantiate the class used to read a dataset. The coil dataset generator # can be found dataset = CoILDataset(full_dataset, transform=augmenter, preload_name=str(g_conf.NUMBER_OF_HOURS) + 'hours_' + g_conf.TRAIN_DATASET_NAME) print("Loaded dataset") data_loader = select_balancing_strategy(dataset, iteration, number_of_workers) model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION) model.cuda() if state_dict != '': seg_model = ERFNet_Fast(2) seg_model = load_my_state_dict(seg_model, torch.load(state_dict)) seg_model.cuda() optimizer = optim.Adam(model.parameters(), lr=g_conf.LEARNING_RATE) if checkpoint_file is not None or g_conf.PRELOAD_MODEL_ALIAS is not None: model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) accumulated_time = checkpoint['total_time'] loss_window = coil_logger.recover_loss_window('train', iteration) else: # We accumulate iteration time and keep the average speed accumulated_time = 0 loss_window = [] print("Before the loss") criterion = Loss(g_conf.LOSS_FUNCTION) color_transforms = Colorizes(2) board = Dashboard(8097) # Loss time series window for data in data_loader: # Basically in this mode of execution, we validate every X Steps, if it goes up 3 times, # add a stop on the _logs folder that is going to be read by this process if g_conf.FINISH_ON_VALIDATION_STALE is not None and \ check_loss_validation_stopped(iteration, g_conf.FINISH_ON_VALIDATION_STALE): break """ #################################### Main optimization loop #################################### """ iteration += 1 if iteration % 1000 == 0: adjust_learning_rate_auto(optimizer, loss_window) # get the control commands from float_data, size = [120,1] capture_time = time.time() controls = data['directions'] # The output(branches) is a list of 5 branches results, each branch is with size [120,3] model.zero_grad() if state_dict != '': with torch.no_grad(): repre = seg_model(torch.squeeze(data['rgb'].cuda()), only_encode=False) inputs = repre imgs = color_transforms(inputs) inputs = inputs.float().cuda() else: inputs = torch.squeeze(data['rgb'].cuda()) # vis board.image( torch.squeeze(data['rgb'])[0].cpu().data, '(train) input iter: ' + str(iteration)) board.image(imgs[0].cpu().data, '(train) output iter: ' + str(iteration)) branches = model(inputs, dataset.extract_inputs(data).cuda()) loss_function_params = { 'branches': branches, 'targets': dataset.extract_targets(data).cuda(), 'controls': controls.cuda(), 'inputs': dataset.extract_inputs(data).cuda(), 'branch_weights': g_conf.BRANCH_LOSS_WEIGHT, 'variable_weights': g_conf.VARIABLE_WEIGHT } loss, _ = criterion(loss_function_params) loss.backward() optimizer.step() """ #################################### Saving the model if necessary #################################### """ if is_ready_to_save(iteration): state = { 'iteration': iteration, 'state_dict': model.state_dict(), 'best_loss': best_loss, 'total_time': accumulated_time, 'optimizer': optimizer.state_dict(), 'best_loss_iter': best_loss_iter } torch.save( state, os.path.join('_logs', exp_batch, exp_alias, 'checkpoints', str(iteration) + '.pth')) """ ################################################ Adding tensorboard logs. Making calculations for logging purposes. These logs are monitored by the printer module. ################################################# """ coil_logger.add_scalar('Loss', loss.data, iteration) coil_logger.add_image('Image', torch.squeeze(data['rgb']), iteration) if loss.data < best_loss: best_loss = loss.data.tolist() best_loss_iter = iteration # Log a random position position = random.randint(0, len(data) - 1) output = model.extract_branch(torch.stack(branches[0:4]), controls) error = torch.abs(output - dataset.extract_targets(data).cuda()) accumulated_time += time.time() - capture_time coil_logger.add_message( 'Iterating', { 'Iteration': iteration, 'Loss': loss.data.tolist(), 'Images/s': (iteration * g_conf.BATCH_SIZE) / accumulated_time, 'BestLoss': best_loss, 'BestLossIteration': best_loss_iter, 'Output': output[position].data.tolist(), 'GroundTruth': dataset.extract_targets(data)[position].data.tolist(), 'Error': error[position].data.tolist(), 'Inputs': dataset.extract_inputs(data)[position].data.tolist() }, iteration) loss_window.append(loss.data.tolist()) coil_logger.write_on_error_csv('train', loss.data) print("Iteration: %d Loss: %f" % (iteration, loss.data)) coil_logger.add_message('Finished', {}) except KeyboardInterrupt: coil_logger.add_message('Error', {'Message': 'Killed By User'}) except RuntimeError as e: coil_logger.add_message('Error', {'Message': str(e)}) except: traceback.print_exc() coil_logger.add_message('Error', {'Message': 'Something Happened'})
def execute(gpu, exp_batch, exp_alias, validation_dataset, suppress_output): latest = None try: # We set the visible cuda devices os.environ["CUDA_VISIBLE_DEVICES"] = gpu # At this point the log file with the correct naming is created. merge_with_yaml(os.path.join('configs', exp_batch, f'{exp_alias}.yaml')) # The validation dataset is always fully loaded, so we fix a very high number of hours g_conf.NUMBER_OF_HOURS = 10000 set_type_of_process(process_type='validation', param=validation_dataset) # Save the output to a file if so desired if suppress_output: save_output(exp_alias) # Define the dataset. This structure has the __get_item__ redefined in a way # that you can access the HDFILES positions from the root directory as a in a vector. full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"], validation_dataset) augmenter = Augmenter(None) # Definition of the dataset to be used. Preload name is just the validation data name dataset = CoILDataset(full_dataset, transform=augmenter, preload_name=validation_dataset, process_type='validation') # Creates the sampler, this part is responsible for managing the keys. It divides # all keys depending on the measurements and produces a set of keys for each bach. # The data loader is the multi threaded module from pytorch that release a number of # workers to get all the data. data_loader = torch.utils.data.DataLoader( dataset, batch_size=g_conf.BATCH_SIZE, shuffle=False, num_workers=g_conf.NUMBER_OF_LOADING_WORKERS, pin_memory=True) model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION, g_conf.SENSORS).cuda() # The window used to keep track of the trainings l1_window = [] latest = get_latest_evaluated_checkpoint() if latest is not None: # When latest is noe l1_window = coil_logger.recover_loss_window( validation_dataset, None) # Keep track of the best loss and the iteration where it happens best_loss = 1000 best_loss_iter = 0 print(20 * '#') print('Starting validation!') print(20 * '#') # Check if the maximum checkpoint for validating has been reached while not maximum_checkpoint_reached(latest): # Wait until the next checkpoint is ready (assuming this is run whilst training the model) if is_next_checkpoint_ready(g_conf.TEST_SCHEDULE): # Get next checkpoint for validation according to the test schedule and load it latest = get_next_checkpoint(g_conf.TEST_SCHEDULE) checkpoint = torch.load( os.path.join('_logs', exp_batch, exp_alias, 'checkpoints', f'{latest}.pth')) checkpoint_iteration = checkpoint['iteration'] model.load_state_dict(checkpoint['state_dict']) model.eval() # Turn off dropout and batchnorm (if any) print(f"Validation loaded, checkpoint {checkpoint_iteration}") # Main metric will be the used loss for training the network criterion = Loss(g_conf.LOSS_FUNCTION) checkpoint_average_loss = 0 # Counter iteration_on_checkpoint = 0 with torch.no_grad(): # save some computation/memory for data in data_loader: # Compute the forward pass on a batch from the validation dataset controls = data['directions'].cuda() img = torch.squeeze(data['rgb']).cuda() speed = dataset.extract_inputs( data).cuda() # this might not always be speed # For auxiliary metrics output = model.forward_branch(img, speed, controls) # For the loss function branches = model(img, speed) loss_function_params = { 'branches': branches, 'targets': dataset.extract_targets(data).cuda(), 'controls': controls, 'inputs': speed, 'branch_weights': g_conf.BRANCH_LOSS_WEIGHT, 'variable_weights': g_conf.VARIABLE_WEIGHT } # It could be either waypoints or direct control if 'waypoint1_angle' in g_conf.TARGETS: write_waypoints_output(checkpoint_iteration, output) else: write_regular_output(checkpoint_iteration, output) loss, _ = criterion(loss_function_params) loss = loss.data.tolist() # Log a random position position = random.randint( 0, len(output.data.tolist()) - 1) coil_logger.add_message( 'Iterating', { 'Checkpoint': latest, 'Iteration': f'{iteration_on_checkpoint * g_conf.BATCH_SIZE}/{len(dataset)}', f'Validation Loss ({g_conf.LOSS_FUNCTION})': loss, 'Output': output[position].data.tolist(), 'GroundTruth': dataset.extract_targets( data)[position].data.tolist(), 'Inputs': dataset.extract_inputs(data) [position].data.tolist() }, latest) # We get the average with a growing list of values # Thanks to John D. Cook: http://www.johndcook.com/blog/standard_deviation/ iteration_on_checkpoint += 1 checkpoint_average_loss += ( loss - checkpoint_average_loss) / iteration_on_checkpoint print( f"\rProgress: {100 * iteration_on_checkpoint * g_conf.BATCH_SIZE / len(dataset):3.4f}% - " f"Average Loss ({g_conf.LOSS_FUNCTION}): {checkpoint_average_loss:.16f}", end='') """ ######## Finish a round of validation, write results, wait for the next ######## """ coil_logger.add_scalar( f'Validation Loss ({g_conf.LOSS_FUNCTION})', checkpoint_average_loss, latest, True) # Let's visualize the distribution of the loss coil_logger.add_histogram( f'Validation Checkpoint Loss ({g_conf.LOSS_FUNCTION})', checkpoint_average_loss, latest) if checkpoint_average_loss < best_loss: best_loss = checkpoint_average_loss best_loss_iter = latest coil_logger.add_message( 'Iterating', { 'Summary': { 'Loss': checkpoint_average_loss, 'BestLoss': best_loss, 'BestLossCheckpoint': best_loss_iter }, 'Checkpoint': latest }, latest) l1_window.append(checkpoint_average_loss) coil_logger.write_on_error_csv(validation_dataset, checkpoint_average_loss, latest) # If we are using the finish when validation stops, we check the current checkpoint if g_conf.FINISH_ON_VALIDATION_STALE is not None: if dlib.count_steps_without_decrease(l1_window) > 3 and \ dlib.count_steps_without_decrease_robust(l1_window) > 3: coil_logger.write_stop(validation_dataset, latest) break else: latest = get_latest_evaluated_checkpoint() time.sleep(1) coil_logger.add_message('Loading', {'Message': 'Waiting Checkpoint'}) print("Waiting for the next Validation") print('\n' + 20 * '#') print('Finished validation!') print(20 * '#') coil_logger.add_message('Finished', {}) except KeyboardInterrupt: coil_logger.add_message('Error', {'Message': 'Killed By User'}) # We erase the output that was unfinished due to some process stop. if latest is not None: coil_logger.erase_csv(latest) except RuntimeError as e: if latest is not None: coil_logger.erase_csv(latest) coil_logger.add_message('Error', {'Message': str(e)}) except: traceback.print_exc() coil_logger.add_message('Error', {'Message': 'Something Happened'}) # We erase the output that was unfinished due to some process stop. if latest is not None: coil_logger.erase_csv(latest)
def execute(gpu, exp_batch, exp_alias): from time import gmtime, strftime manualSeed = g_conf.SEED torch.cuda.manual_seed(manualSeed) os.environ["CUDA_VISIBLE_DEVICES"] = gpu merge_with_yaml(os.path.join('configs', exp_batch, exp_alias + '.yaml')) set_type_of_process('train') coil_logger.add_message('Loading', {'GPU': gpu}) if not os.path.exists('_output_logs'): os.mkdir('_output_logs') sys.stdout = open(os.path.join( '_output_logs', g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) if monitorer.get_status(exp_batch, exp_alias + '.yaml', g_conf.PROCESS_NAME)[0] == "Finished": return full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"], g_conf.TRAIN_DATASET_NAME) real_dataset = g_conf.TARGET_DOMAIN_PATH #main data loader dataset = CoILDataset(full_dataset, real_dataset, transform=transforms.Compose([transforms.ToTensor() ])) sampler = BatchSequenceSampler( splitter.control_steer_split(dataset.measurements, dataset.meta_data), g_conf.BATCH_SIZE, g_conf.NUMBER_IMAGES_SEQUENCE, g_conf.SEQUENCE_STRIDE) data_loader = torch.utils.data.DataLoader(dataset, batch_sampler=sampler, shuffle=False, num_workers=6, pin_memory=True) st = lambda aug: iag.Sometimes(aug, 0.4) oc = lambda aug: iag.Sometimes(aug, 0.3) rl = lambda aug: iag.Sometimes(aug, 0.09) augmenter = iag.Augmenter([iag.ToGPU()] + [ rl(iag.GaussianBlur( (0, 1.5))), # blur images with a sigma between 0 and 1.5 rl(iag.AdditiveGaussianNoise(loc=0, scale=( 0.0, 0.05), per_channel=0.5)), # add gaussian noise to images oc(iag.Dropout((0.0, 0.10), per_channel=0.5) ), # randomly remove up to X% of the pixels oc( iag.CoarseDropout( (0.0, 0.10), size_percent=(0.08, 0.2), per_channel=0.5)), # randomly remove up to X% of the pixels oc(iag.Add((-40, 40), per_channel=0.5) ), # change brightness of images (by -X to Y of original value) st(iag.Multiply((0.10, 2), per_channel=0.2) ), # change brightness of images (X-Y% of original value) rl(iag.ContrastNormalization( (0.5, 1.5), per_channel=0.5)), # improve or worsen the contrast rl(iag.Grayscale((0.0, 1))), # put grayscale ] # do all of the above in random order ) l1weight = g_conf.L1_WEIGHT task_adv_weight = g_conf.TASK_ADV_WEIGHT image_size = tuple([88, 200]) print(strftime("%Y-%m-%d %H:%M:%S", gmtime())) print("GPU", gpu) print("Configurations of ", exp_alias) print("GANMODEL_NAME", g_conf.GANMODEL_NAME) print("LOSS_FUNCTION", g_conf.LOSS_FUNCTION) print("LR_G, LR_D, LR", g_conf.LR_G, g_conf.LR_D, g_conf.LEARNING_RATE) print("SKIP", g_conf.SKIP) print("TYPE", g_conf.TYPE) print("L1 WEIGHT", g_conf.L1_WEIGHT) print("TASK ADV WEIGHT", g_conf.TASK_ADV_WEIGHT) print("LAB SMOOTH", g_conf.LABSMOOTH) if g_conf.GANMODEL_NAME == 'LSDcontrol': netD = ganmodels._netD(loss=g_conf.LOSS_FUNCTION).cuda() netG = ganmodels._netG(loss=g_conf.LOSS_FUNCTION, skip=g_conf.SKIP).cuda() elif g_conf.GANMODEL_NAME == 'LSDcontrol_nopatch': netD = ganmodels_nopatch._netD(loss=g_conf.LOSS_FUNCTION).cuda() netG = ganmodels_nopatch._netG(loss=g_conf.LOSS_FUNCTION).cuda() elif g_conf.GANMODEL_NAME == 'LSDcontrol_nopatch_smaller': netD = ganmodels_nopatch_smaller._netD( loss=g_conf.LOSS_FUNCTION).cuda() netG = ganmodels_nopatch_smaller._netG( loss=g_conf.LOSS_FUNCTION).cuda() elif g_conf.GANMODEL_NAME == 'LSDcontrol_task': netD_task = ganmodels_task._netD_task(loss=g_conf.LOSS_FUNCTION).cuda() netD_img = ganmodels_task._netD_img(loss=g_conf.LOSS_FUNCTION).cuda() netG = ganmodels_task._netG(loss=g_conf.LOSS_FUNCTION).cuda() netF = ganmodels_task._netF(loss=g_conf.LOSS_FUNCTION).cuda() if g_conf.PRETRAINED == 'RECON': netF_statedict = torch.load('netF_GAN_Pretrained.wts') netF.load_state_dict(netF_statedict) elif g_conf.PRETRAINED == 'IL': print("Loading IL") model_IL = torch.load('best_loss_20-06_EpicClearWeather.pth') model_IL_state_dict = model_IL['state_dict'] netF_state_dict = netF.state_dict() print(len(netF_state_dict.keys()), len(model_IL_state_dict.keys())) for i, keys in enumerate( zip(netF_state_dict.keys(), model_IL_state_dict.keys())): newkey, oldkey = keys # if newkey.split('.')[0] == "branch" and oldkey.split('.')[0] == "branches": # print("No Transfer of ", newkey, " to ", oldkey) # else: print("Transferring ", newkey, " to ", oldkey) netF_state_dict[newkey] = model_IL_state_dict[oldkey] netF.load_state_dict(netF_state_dict) print("IL Model Loaded!") elif g_conf.GANMODEL_NAME == 'LSDcontrol_task_2d': netD_bin = ganmodels_task._netD_task().cuda() netD_img = ganmodels_task._netD_img().cuda() netG = ganmodels_task._netG().cuda() netF = ganmodels_task._netF().cuda() if g_conf.PRETRAINED == 'IL': print("Loading IL") model_IL = torch.load(g_conf.IL_AGENT_PATH) model_IL_state_dict = model_IL['state_dict'] netF_state_dict = netF.state_dict() print(len(netF_state_dict.keys()), len(model_IL_state_dict.keys())) for i, keys in enumerate( zip(netF_state_dict.keys(), model_IL_state_dict.keys())): newkey, oldkey = keys print("Transferring ", newkey, " to ", oldkey) netF_state_dict[newkey] = model_IL_state_dict[oldkey] netF.load_state_dict(netF_state_dict) print("IL Model Loaded!") #### if g_conf.IF_AUG: print("Loading Aug Decoder") model_dec = torch.load(g_conf.DECODER_RECON_PATH) else: print("Loading Decoder") model_dec = torch.load(g_conf.DECODER_RECON_PATH) model_dec_state_dict = model_dec['stateG_dict'] netG_state_dict = netG.state_dict() print(len(netG_state_dict.keys()), len(model_dec_state_dict.keys())) for i, keys in enumerate( zip(netG_state_dict.keys(), model_dec_state_dict.keys())): newkey, oldkey = keys print("Transferring ", newkey, " to ", oldkey) netG_state_dict[newkey] = model_dec_state_dict[oldkey] netG.load_state_dict(netG_state_dict) print("Decoder Model Loaded!") init_weights(netD_bin) init_weights(netD_img) # init_weights(netG) print(netD_bin) print(netF) optimD_bin = torch.optim.Adam(netD_bin.parameters(), lr=g_conf.LR_D, betas=(0.5, 0.999)) optimD_img = torch.optim.Adam(netD_img.parameters(), lr=g_conf.LR_D, betas=(0.5, 0.999)) optimG = torch.optim.Adam(netG.parameters(), lr=g_conf.LR_D, betas=(0.5, 0.999)) if g_conf.TYPE == 'task': optimF = torch.optim.Adam(netF.parameters(), lr=g_conf.LEARNING_RATE) Task_Loss = TaskLoss() if g_conf.GANMODEL_NAME == 'LSDcontrol_task_2d': print("Using cross entropy!") Loss = torch.nn.CrossEntropyLoss().cuda() L1_loss = torch.nn.L1Loss().cuda() iteration = 0 best_loss_iter_F = 0 best_loss_iter_G = 0 best_lossF = 1000000.0 best_lossD = 1000000.0 best_lossG = 1000000.0 accumulated_time = 0 gen_iterations = 0 n_critic = g_conf.N_CRITIC lossF = Variable(torch.Tensor([100.0])) lossG_adv = Variable(torch.Tensor([100.0])) lossG_smooth = Variable(torch.Tensor([100.0])) lossG = Variable(torch.Tensor([100.0])) netD_bin.train() netD_img.train() netG.train() netF.train() capture_time = time.time() if not os.path.exists('./imgs_' + exp_alias): os.mkdir('./imgs_' + exp_alias) #TODO check how C network is optimized in LSDSEG #TODO put family for losses #IMPORTANT WHILE RUNNING THIS, CONV.PY MUST HAVE BATCHNORMS fake_img_pool_src = ImagePool(50) fake_img_pool_tgt = ImagePool(50) for data in data_loader: set_requires_grad(netD_bin, True) set_requires_grad(netD_img, True) set_requires_grad(netG, True) set_requires_grad(netF, True) # print("ITERATION:", iteration) val = 0.0 input_data, float_data, tgt_imgs = data if g_conf.IF_AUG: inputs = augmenter(0, input_data['rgb']) tgt_imgs = augmenter(0, tgt_imgs) else: inputs = input_data['rgb'].cuda() tgt_imgs = tgt_imgs.cuda() inputs = inputs.squeeze(1) inputs = inputs - val #subtracted by 0.5 tgt_imgs = tgt_imgs - val #subtracted by 0.5 controls = float_data[:, dataset.controls_position(), :] src_embed_inputs, src_branches = netF( inputs, dataset.extract_inputs(float_data).cuda()) tgt_embed_inputs = netF(tgt_imgs, None) src_img_fake = netG(src_embed_inputs) tgt_img_fake = netG(tgt_embed_inputs) if iteration % 100 == 0: imgs_to_save = torch.cat( (inputs[:1] + val, src_img_fake[:1] + val, tgt_imgs[:1] + val, tgt_img_fake[:1] + val), 0).cpu().data coil_logger.add_image("Images", imgs_to_save, iteration) imgs_to_save = imgs_to_save.clamp(0.0, 1.0) vutils.save_image(imgs_to_save, './imgs_' + exp_alias + '/' + str(iteration) + '_real_and_fake.png', normalize=False) ##--------------------Discriminator part!!!!!!!!!!-------------------## set_requires_grad(netD_bin, True) set_requires_grad(netD_img, False) set_requires_grad(netG, False) set_requires_grad(netF, False) optimD_bin.zero_grad() outputsD_real_src_bin = netD_bin(src_embed_inputs) outputsD_real_tgt_bin = netD_bin(tgt_embed_inputs) gradient_penalty = calc_gradient_penalty(netD_bin, src_embed_inputs, tgt_embed_inputs) lossD_bin = torch.mean(outputsD_real_tgt_bin - outputsD_real_src_bin) + gradient_penalty lossD_bin.backward(retain_graph=True) optimD_bin.step() coil_logger.add_scalar('Total LossD Bin', lossD_bin.data, iteration) #### Discriminator img update #### set_requires_grad(netD_bin, False) set_requires_grad(netD_img, True) set_requires_grad(netG, False) set_requires_grad(netF, False) optimD_img.zero_grad() outputsD_fake_src_img = netD_img(src_img_fake.detach()) outputsD_fake_tgt_img = netD_img(tgt_img_fake.detach()) outputsD_real_src_img = netD_img(inputs) outputsD_real_tgt_img = netD_img(tgt_imgs) gradient_penalty_src = calc_gradient_penalty(netD_img, inputs, src_img_fake) lossD_img_src = torch.mean( outputsD_fake_src_img - outputsD_real_src_img) + gradient_penalty_src gradient_penalty_tgt = calc_gradient_penalty(netD_img, tgt_imgs, tgt_img_fake) lossD_img_tgt = torch.mean( outputsD_fake_tgt_img - outputsD_real_tgt_img) + gradient_penalty_tgt lossD_img = (lossD_img_src + lossD_img_tgt) * 0.5 lossD_img.backward(retain_graph=True) optimD_img.step() coil_logger.add_scalar('Total LossD img', lossD_img.data, iteration) if ((iteration + 1) % n_critic) == 0: #####Generator updates####### set_requires_grad(netD_bin, False) set_requires_grad(netD_img, False) set_requires_grad(netG, True) set_requires_grad(netF, False) outputsD_fake_src_img = netD_img(src_img_fake) outputsD_real_tgt_img = netD_img(tgt_imgs) outputsD_fake_tgt_img = netD_img(tgt_img_fake) lossG_src_smooth = L1_loss(src_img_fake, inputs) lossG_tgt_smooth = L1_loss(tgt_img_fake, tgt_imgs) lossG_smooth = (lossG_src_smooth + lossG_tgt_smooth) * 0.5 lossG_adv = 0.5 * (-1.0 * outputsD_fake_src_img.mean() - 1.0 * outputsD_fake_tgt_img.mean()) lossG = (lossG_smooth + 0.0 * lossG_adv) lossG.backward(retain_graph=True) optimG.step() coil_logger.add_scalar('Total LossG', lossG.data, iteration) #####Task network updates########################## set_requires_grad(netD_bin, False) set_requires_grad(netD_img, False) set_requires_grad(netG, False) set_requires_grad(netF, True) optimF.zero_grad() src_embed_inputs, src_branches = netF( inputs, dataset.extract_inputs(float_data).cuda()) tgt_embed_inputs = netF(tgt_imgs, None) src_img_fake = netG(src_embed_inputs) tgt_img_fake = netG(tgt_embed_inputs) outputsD_fake_src_img = netD_img(src_img_fake) outputsD_real_tgt_img = netD_img(tgt_imgs) lossF_task = Task_Loss.MSELoss( src_branches, dataset.extract_targets(float_data).cuda(), controls.cuda(), dataset.extract_inputs(float_data).cuda()) lossF_adv_bin = netD_bin(src_embed_inputs).mean() - netD_bin( tgt_embed_inputs).mean() lossF_adv_img = outputsD_fake_src_img.mean( ) - outputsD_real_tgt_img.mean() lossF_adv = 0.5 * (lossF_adv_bin + 0.1 * lossF_adv_img) lossF = (lossF_task + task_adv_weight * lossF_adv) coil_logger.add_scalar('Total Task Loss', lossF.data, iteration) coil_logger.add_scalar('Adv Task Loss', lossF_adv.data, iteration) coil_logger.add_scalar('Only Task Loss', lossF_task.data, iteration) lossF.backward(retain_graph=True) optimF.step() if lossF.data < best_lossF: best_lossF = lossF.data.tolist() best_loss_iter_F = iteration #optimization for one iter done! position = random.randint(0, len(float_data) - 1) accumulated_time += time.time() - capture_time capture_time = time.time() if is_ready_to_save(iteration): state = { 'iteration': iteration, 'stateD_bin_dict': netD_bin.state_dict(), 'stateF_dict': netF.state_dict(), 'best_lossD': best_lossD, 'total_time': accumulated_time, 'best_loss_iter_F': best_loss_iter_F } torch.save( state, os.path.join('/datatmp/Experiments/rohitgan/_logs', exp_batch, exp_alias, 'checkpoints', str(iteration) + '.pth')) if iteration == best_loss_iter_F and iteration > 10000: state = { 'iteration': iteration, 'stateD_bin_dict': netD_bin.state_dict(), 'stateF_dict': netF.state_dict(), 'best_lossD': best_lossD, 'best_lossF': best_lossF, 'total_time': accumulated_time, 'best_loss_iter_F': best_loss_iter_F } torch.save( state, os.path.join('/datatmp/Experiments/rohitgan/_logs', exp_batch, exp_alias, 'best_modelF' + '.pth')) iteration += 1
def execute(gpu, exp_batch, exp_alias): os.environ["CUDA_VISIBLE_DEVICES"] = gpu merge_with_yaml(os.path.join('configs', exp_batch, exp_alias + '.yaml')) set_type_of_process('train') coil_logger.add_message('Loading', {'GPU': gpu}) if not os.path.exists('_output_logs'): os.mkdir('_output_logs') sys.stdout = open(os.path.join( '_output_logs', g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) if monitorer.get_status(exp_batch, exp_alias + '.yaml', g_conf.PROCESS_NAME)[0] == "Finished": return full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"], g_conf.TRAIN_DATASET_NAME) dataset = CoILDataset(full_dataset, transform=transforms.Compose([transforms.ToTensor() ])) sampler = BatchSequenceSampler( splitter.control_steer_split(dataset.measurements, dataset.meta_data), g_conf.BATCH_SIZE, g_conf.NUMBER_IMAGES_SEQUENCE, g_conf.SEQUENCE_STRIDE) data_loader = torch.utils.data.DataLoader(dataset, batch_sampler=sampler, shuffle=False, num_workers=6, pin_memory=True) l1weight = g_conf.L1_WEIGHT image_size = tuple([88, 200]) print("Configurations of ", exp_alias) print("GANMODEL_NAME", g_conf.GANMODEL_NAME) print("LOSS_FUNCTION", g_conf.LOSS_FUNCTION) print("LR_G, LR_D, LR", g_conf.LR_G, g_conf.LR_D, g_conf.LEARNING_RATE) print("SKIP", g_conf.SKIP) print("TYPE", g_conf.TYPE) print("L1 WEIGHT", g_conf.L1_WEIGHT) print("LAB SMOOTH", g_conf.LABSMOOTH) if g_conf.GANMODEL_NAME == 'LSDcontrol': netD = ganmodels._netD(loss=g_conf.LOSS_FUNCTION).cuda() netG = ganmodels._netG(loss=g_conf.LOSS_FUNCTION, skip=g_conf.SKIP).cuda() elif g_conf.GANMODEL_NAME == 'LSDcontrol_nopatch': netD = ganmodels_nopatch._netD(loss=g_conf.LOSS_FUNCTION).cuda() netG = ganmodels_nopatch._netG(loss=g_conf.LOSS_FUNCTION).cuda() elif g_conf.GANMODEL_NAME == 'LSDcontrol_nopatch_smaller': netD = ganmodels_nopatch_smaller._netD( loss=g_conf.LOSS_FUNCTION).cuda() netG = ganmodels_nopatch_smaller._netG( loss=g_conf.LOSS_FUNCTION).cuda() elif g_conf.GANMODEL_NAME == 'LSDcontrol_task': netD = ganmodels_task._netD(loss=g_conf.LOSS_FUNCTION).cuda() netG = ganmodels_task._netG(loss=g_conf.LOSS_FUNCTION).cuda() netF = ganmodels_task._netG(loss=g_conf.LOSS_FUNCTION).cuda() init_weights(netD) init_weights(netG) print(netD) print(netG) optimD = torch.optim.Adam(netD.parameters(), lr=g_conf.LR_D, betas=(0.7, 0.999)) optimG = torch.optim.Adam(netG.parameters(), lr=g_conf.LR_G, betas=(0.7, 0.999)) if g_conf.TYPE == 'task': optimF = torch.optim.Adam(netG.parameters(), lr=g_conf.LEARNING_RATE, betas=(0.7, 0.999)) Task_Loss = TaskLoss() if g_conf.LOSS_FUNCTION == 'LSGAN': Loss = torch.nn.MSELoss().cuda() elif g_conf.LOSS_FUNCTION == 'NORMAL': Loss = torch.nn.BCELoss().cuda() L1_loss = torch.nn.L1Loss().cuda() iteration = 0 best_loss_iter = 0 best_lossD = 1000000.0 best_lossG = 1000000.0 accumulated_time = 0 netG.train() netD.train() capture_time = time.time() if not os.path.exists('./imgs_' + exp_alias): os.mkdir('./imgs_' + exp_alias) #TODO add image queue #TODO add auxiliary regression loss for steering #TODO put family for losses fake_img_pool = ImagePool(50) for data in data_loader: val = 0.5 input_data, float_data = data inputs = input_data['rgb'].cuda() inputs = inputs.squeeze(1) inputs_in = inputs - val fake_inputs = netG(inputs_in) #subtracted by 0.5 fake_inputs_in = fake_inputs if iteration % 200 == 0: imgs_to_save = torch.cat((inputs_in[:2] + val, fake_inputs_in[:2]), 0).cpu().data vutils.save_image(imgs_to_save, './imgs_' + exp_alias + '/' + str(iteration) + '_real_and_fake.png', normalize=True) coil_logger.add_image("Images", imgs_to_save, iteration) ##--------------------Discriminator part!!!!!!!!!!-------------------## set_requires_grad(netD, True) optimD.zero_grad() ##fake fake_inputs_forD = fake_img_pool.query(fake_inputs) outputsD_fake_forD = netD(fake_inputs_forD.detach()) labsize = outputsD_fake_forD.size() labels_fake = torch.zeros(labsize) #Fake labels label_fake_noise = torch.rand( labels_fake.size()) * 0.05 - 0.025 #Label smoothing if g_conf.LABSMOOTH == 1: labels_fake = labels_fake + labels_fake_noise labels_fake = Variable(labels_fake).cuda() lossD_fake = Loss(outputsD_fake_forD, labels_fake) ##real outputsD_real = netD(inputs) print("some d outputs", outputsD_real[0]) labsize = outputsD_real.size() labels_real = torch.ones(labsize) #Real labels label_real_noise = torch.rand( labels_real.size()) * 0.05 - 0.025 #Label smoothing if g_conf.LABSMOOTH == 1: labels_real = labels_real + labels_real_noise labels_real = Variable(labels_real).cuda() lossD_real = Loss(outputsD_real, labels_real) #Discriminator updates lossD = (lossD_real + lossD_fake) * 0.5 # lossD /= len(inputs) lossD.backward() optimD.step() coil_logger.add_scalar('Total LossD', lossD.data, iteration) coil_logger.add_scalar('Real LossD', lossD_real.data, iteration) coil_logger.add_scalar('Fake LossD', lossD_fake.data, iteration) ##--------------------Generator part!!!!!!!!!!----------------------- set_requires_grad(netD, False) optimG.zero_grad() outputsD_fake_forG = netD(fake_inputs) #Generator updates lossG_adv = Loss(outputsD_fake_forG, labels_real) lossG_smooth = L1_loss(fake_inputs, inputs) lossG = (lossG_adv + l1weight * lossG_smooth) / (1.0 + l1weight) lossG lossG.backward() optimG.step() coil_logger.add_scalar('Total LossG', lossG.data, iteration) coil_logger.add_scalar('Adv LossG', lossG_adv.data, iteration) coil_logger.add_scalar('Smooth LossG', lossG_smooth.data, iteration) #optimization for one iter done! position = random.randint(0, len(float_data) - 1) if lossD.data < best_lossD: best_lossD = lossD.data.tolist() if lossG.data < best_lossG: best_lossG = lossG.data.tolist() best_loss_iter = iteration accumulated_time += time.time() - capture_time capture_time = time.time() print("LossD", lossD.data.tolist(), "LossG", lossG.data.tolist(), "BestLossD", best_lossD, "BestLossG", best_lossG, "Iteration", iteration, "Best Loss Iteration", best_loss_iter) coil_logger.add_message( 'Iterating', { 'Iteration': iteration, 'LossD': lossD.data.tolist(), 'LossG': lossG.data.tolist(), 'Images/s': (iteration * g_conf.BATCH_SIZE) / accumulated_time, 'BestLossD': best_lossD, 'BestLossIteration': best_loss_iter, 'BestLossG': best_lossG, 'BestLossIteration': best_loss_iter, 'GroundTruth': dataset.extract_targets(float_data)[position].data.tolist(), 'Inputs': dataset.extract_inputs(float_data)[position].data.tolist() }, iteration) if is_ready_to_save(iteration): state = { 'iteration': iteration, 'stateD_dict': netD.state_dict(), 'stateG_dict': netG.state_dict(), 'best_lossD': best_lossD, 'best_lossG': best_lossG, 'total_time': accumulated_time, 'best_loss_iter': best_loss_iter } torch.save( state, os.path.join('/datatmp/Experiments/rohitgan/_logs', exp_batch, exp_alias, 'checkpoints', str(iteration) + '.pth')) if iteration == best_loss_iter: state = { 'iteration': iteration, 'stateD_dict': netD.state_dict(), 'stateG_dict': netG.state_dict(), 'best_lossD': best_lossD, 'best_lossG': best_lossG, 'total_time': accumulated_time, 'best_loss_iter': best_loss_iter } torch.save( state, os.path.join('/datatmp/Experiments/rohitgan/_logs', exp_batch, exp_alias, 'best_modelG' + '.pth')) iteration += 1
def execute(gpu, exp_batch, exp_alias): manualSeed = 123 torch.cuda.manual_seed(manualSeed) os.environ["CUDA_VISIBLE_DEVICES"] = gpu merge_with_yaml(os.path.join('configs', exp_batch, exp_alias + '.yaml')) set_type_of_process('train') coil_logger.add_message('Loading', {'GPU': gpu}) if not os.path.exists('_output_logs'): os.mkdir('_output_logs') sys.stdout = open(os.path.join('_output_logs', g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) if monitorer.get_status(exp_batch, exp_alias + '.yaml', g_conf.PROCESS_NAME)[0] == "Finished": return full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"], g_conf.TRAIN_DATASET_NAME) dataset = CoILDataset(full_dataset, transform=transforms.Compose([transforms.ToTensor()])) sampler = BatchSequenceSampler(splitter.control_steer_split(dataset.measurements, dataset.meta_data), g_conf.BATCH_SIZE, g_conf.NUMBER_IMAGES_SEQUENCE, g_conf.SEQUENCE_STRIDE) data_loader = torch.utils.data.DataLoader(dataset, batch_sampler=sampler, shuffle=False, num_workers=6, pin_memory=True) l1weight = g_conf.L1 image_size = tuple([88, 200]) testmode = 1 if g_conf.GANMODEL_NAME == 'LSDcontrol': netD = ganmodels._netD().cuda() netG = ganmodels._netG(skip=g_conf.SKIP).cuda() if g_conf.GANMODEL_NAME == 'LSDcontrol_acgan_nopatch': netD = acganmodels_nopatch._netD().cuda() netG = acganmodels_nopatch._netG(skip=g_conf.SKIP).cuda() init_weights(netD) init_weights(netG) print(netD) print(netG) optimD = torch.optim.Adam(netD.parameters(), lr=0.0002, betas=(0.5, 0.999)) optimG = torch.optim.Adam(netG.parameters(), lr=0.0002, betas=(0.5, 0.999)) MSE_loss = torch.nn.MSELoss().cuda() L1_loss = torch.nn.L1Loss().cuda() iteration = 0 best_loss_iter = 0 best_lossD = 1000000.0 best_lossG = 1000000.0 accumulated_time = 0 netG.train() netD.train() capture_time = time.time() if not os.path.exists('./imgs_' + exp_alias): os.mkdir('./imgs_' + exp_alias) for data in data_loader: input_data, float_data = data inputs = input_data['rgb'].cuda() inputs = inputs.squeeze(1) fake_inputs = netG(inputs) if iteration % 200 == 0: imgs_to_save = torch.cat((inputs[:2], fake_inputs[:2]), 0).cpu().data vutils.save_image(imgs_to_save, './imgs_' + exp_alias + '/' + str(iteration) + '_real_and_fake.png', normalize=True) coil_logger.add_image("Images", imgs_to_save, iteration) controls = float_data[:, dataset.controls_position(), :] steer = controls[:, 0].cuda() ##--------------------Discriminator part!!!!!!!!!!----------------------- ##fake set_requires_grad(netD, True) optimD.zero_grad() outputsD_fake_forD, fakeD_steer = netD(fake_inputs.detach()) labsize = outputsD_fake_forD.size() labels_fake = torch.zeros(labsize) #Fake labels label_fake_noise = torch.rand(labels_fake.size()) * 0.1 #Label smoothing labels_fake = labels_fake + label_fake_noise labels_fake = Variable(labels_fake).cuda() lossD_fake_aux = MSE_loss(fakeD_steer, steer) lossD_fake_total = lossD_fake + lossD_fake_aux lossD_fake_total.backward() optimD.step() ##real set_requires_grad(netD, True) optimD.zero_grad() outputsD_real_forD, realD_steer = netD(inputs) labsize = outputsD_real_forD.size() labels_real = torch.ones(labsize) #Real labels label_real_noise = torch.rand(labels_real.size()) * 0.1 #Label smoothing labels_real = labels_real - label_real_noise labels_real = Variable(labels_real).cuda() lossD_real = torch.mean(outputsD_real_forD) lossD_real_aux = MSE_loss(realD_steer, steer) #Discriminator updates lossD_real_total = lossD_real + lossD_real_aux lossD_real_total.backward() optimD.step() lossD = lossD_real_total + lossD_fake_total coil_logger.add_scalar('Aux Real LossD', lossD_real_aux.data, iteration) coil_logger.add_scalar('Aux Fake LossD', lossD_fake_aux.data, iteration) coil_logger.add_scalar('Total Real LossD', lossD_real_total.data , iteration) coil_logger.add_scalar('Total Fake LossD', lossD_fake_total.data , iteration) coil_logger.add_scalar('Real LossD', lossD_real.data , iteration) coil_logger.add_scalar('Fake LossD', lossD_fake.data , iteration) ##--------------------Generator part!!!!!!!!!!----------------------- set_requires_grad(netD, False) optimG.zero_grad() outputsD_fake_forG, G_steer = netD(fake_inputs) #Generator updates lossG_smooth = L1_loss(fake_inputs, inputs) lossG_aux = MSE_loss(G_steer, steer) lossG = lossG_adv + lossG_aux + l1weight * lossG_smooth lossG.backward() optimG.step() coil_logger.add_scalar('Total LossG', lossG.data / len(inputs), iteration) coil_logger.add_scalar('Adv LossG', lossG_adv.data , iteration) coil_logger.add_scalar('Smooth LossG', lossG_smooth.data , iteration) coil_logger.add_scalar('Aux LossG', lossG_aux.data , iteration) #optimization for one iter done! position = random.randint(0, len(float_data)-1) if lossD.data < best_lossD: best_lossD = lossD.data.tolist() if lossG.data < best_lossG: best_lossG = lossG.data.tolist() best_loss_iter = iteration accumulated_time += time.time() - capture_time capture_time = time.time() print("LossD", lossD.data.tolist(), "LossG", lossG.data.tolist(), "BestLossD", best_lossD, "BestLossG", best_lossG, "Iteration", iteration, "Best Loss Iteration", best_loss_iter) coil_logger.add_message('Iterating', {'Iteration': iteration, 'LossD': lossD.data.tolist(), 'LossG': lossG.data.tolist(), 'Images/s': (iteration*g_conf.BATCH_SIZE)/accumulated_time, 'BestLossD': best_lossD, 'BestLossIteration': best_loss_iter, 'BestLossG': best_lossG, 'BestLossIteration': best_loss_iter, 'GroundTruth': dataset.extract_targets(float_data)[position].data.tolist(), 'Inputs': dataset.extract_inputs(float_data)[position].data.tolist()}, iteration) if is_ready_to_save(iteration): state = { 'iteration': iteration, 'stateD_dict': netD.state_dict(), 'stateG_dict': netG.state_dict(), 'best_lossD': best_lossD, 'best_lossG': best_lossG, 'total_time': accumulated_time, 'best_loss_iter': best_loss_iter } torch.save(state, os.path.join('/datatmp/Experiments/rohitgan/_logs', exp_batch, exp_alias , 'checkpoints', str(iteration) + '.pth')) if iteration == best_loss_iter: state = { 'iteration': iteration, 'stateD_dict': netD.state_dict(), 'stateG_dict': netG.state_dict(), 'best_lossD': best_lossD, 'best_lossG': best_lossG, 'total_time': accumulated_time, 'best_loss_iter': best_loss_iter } torch.save(state, os.path.join('/datatmp/Experiments/rohitgan/_logs', exp_batch, exp_alias , 'best_modelG' + '.pth')) iteration += 1
def execute(gpu, exp_batch, exp_alias): # We set the visible cuda devices try: os.environ["CUDA_VISIBLE_DEVICES"] = gpu # At this point the log file with the correct naming is created. merge_with_yaml(os.path.join('configs', exp_batch, exp_alias + '.yaml')) set_type_of_process('train') coil_logger.add_message('Loading', {'GPU': gpu}) if not os.path.exists('_output_logs'): os.mkdir('_output_logs') sys.stdout = open(os.path.join( '_output_logs', g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) if monitorer.get_status(exp_batch, exp_alias + '.yaml', g_conf.PROCESS_NAME)[0] == "Finished": # TODO: print some cool summary or not ? return #Define the dataset. This structure is has the __get_item__ redefined in a way #that you can access the HDFILES positions from the root directory as a in a vector. full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"], g_conf.TRAIN_DATASET_NAME) #augmenter_cpu = iag.AugmenterCPU(g_conf.AUGMENTATION_SUITE_CPU) dataset = CoILDataset(full_dataset, transform=transforms.Compose( [transforms.ToTensor()])) # Creates the sampler, this part is responsible for managing the keys. It divides # all keys depending on the measurements and produces a set of keys for each bach. sampler = BatchSequenceSampler( splitter.control_steer_split(dataset.measurements, dataset.meta_data), g_conf.BATCH_SIZE, g_conf.NUMBER_IMAGES_SEQUENCE, g_conf.SEQUENCE_STRIDE) # The data loader is the multi threaded module from pytorch that release a number of # workers to get all the data. # TODO: batch size an number of workers go to some configuration file data_loader = torch.utils.data.DataLoader(dataset, batch_sampler=sampler, shuffle=False, num_workers=12, pin_memory=True) # By instanciating the augmenter we get a callable that augment images and transform them # into tensors. augmenter = iag.Augmenter(g_conf.AUGMENTATION_SUITE) # TODO: here there is clearly a posibility to make a cool "conditioning" system. model = CoILModel(g_conf.MODEL_NAME) model.cuda() exit() print(model) criterion = Loss() # TODO: DATASET SIZE SEEMS WEIRD optimizer = optim.SGD(model.parameters(), lr=0.0001, momentum=0.9) checkpoint_file = get_latest_saved_checkpoint() if checkpoint_file != None: checkpoint = torch.load( os.path.join('_logs', exp_batch, exp_alias, 'checkpoints', str(get_latest_saved_checkpoint()))) iteration = checkpoint['iteration'] accumulated_time = checkpoint['total_time'] best_loss = checkpoint['best_loss'] best_loss_iter = checkpoint['best_loss_iter'] else: iteration = 0 best_loss = 10000.0 accumulated_time = 0 # We accumulate iteration time and keep the average speed best_loss_iter = 0 # TODO: The checkpoint will continue, so it should erase everything up to the iteration print(dataset.meta_data) print(model) capture_time = time.time() for data in data_loader: input_data, float_data = data #TODO, ADD ITERATION SCHEDULE input_rgb_data = augmenter(0, input_data['rgb']) #coil_logger.add_images(input_rgb_data) # get the control commands from float_data, size = [120,1] controls = float_data[:, dataset.controls_position(), :] print(" CONTROLS ", controls.shape) # The output(branches) is a list of 5 branches results, each branch is with size [120,3] model.zero_grad() print('INPUTS', dataset.extract_inputs(float_data).shape) branches = model(input_rgb_data, dataset.extract_inputs(float_data).cuda()) #print ("len ",len(branches)) #targets = torch.cat([steer_gt, gas_gt, brake_gt], 1) print("Extracted targets ", dataset.extract_targets(float_data).shape[0]) loss = criterion.MSELoss( branches, dataset.extract_targets(float_data).cuda(), controls.cuda(), dataset.extract_inputs(float_data).cuda()) # TODO: All these logging things could go out to clean up the main if loss.data < best_loss: best_loss = loss.data.tolist() best_loss_iter = iteration # Log a random position position = random.randint(0, len(float_data) - 1) output = model.extract_branch(torch.stack(branches[0:4]), controls) error = torch.abs(output - dataset.extract_targets(float_data).cuda()) # TODO: For now we are computing the error for just the correct branch, it could be multi- branch, coil_logger.add_scalar('Loss', loss.data, iteration) loss.backward() optimizer.step() accumulated_time += time.time() - capture_time capture_time = time.time() # TODO: Get only the float_data that are actually generating output # TODO: itearation is repeating , and that is dumb coil_logger.add_message( 'Iterating', { 'Iteration': iteration, 'Loss': loss.data.tolist(), 'Images/s': (iteration * g_conf.BATCH_SIZE) / accumulated_time, 'BestLoss': best_loss, 'BestLossIteration': best_loss_iter, 'Output': output[position].data.tolist(), 'GroundTruth': dataset.extract_targets( float_data)[position].data.tolist(), 'Error': error[position].data.tolist(), 'Inputs': dataset.extract_inputs(float_data)[position].data.tolist() }, iteration) # TODO: For now we are computing the error for just the correct branch, it could be multi-branch, # TODO: save also the optimizer state dictionary if is_ready_to_save(iteration): state = { 'iteration': iteration, 'state_dict': model.state_dict(), 'best_loss': best_loss, 'total_time': accumulated_time, 'best_loss_iter': best_loss_iter } # TODO : maybe already summarize the best model ??? torch.save( state, os.path.join('_logs', exp_batch, exp_alias, 'checkpoints', str(iteration) + '.pth')) iteration += 1 except KeyboardInterrupt: coil_logger.add_message('Error', {'Message': 'Killed By User'}) except: traceback.print_exc() coil_logger.add_message('Error', {'Message': 'Something Happened'})
def execute(gpu, exp_batch, exp_alias): # We set the visible cuda devices try: os.environ["CUDA_VISIBLE_DEVICES"] = gpu # At this point the log file with the correct naming is created. merge_with_yaml(os.path.join('configs', exp_batch, exp_alias + '.yaml')) set_type_of_process('train') coil_logger.add_message('Loading', {'GPU': gpu}) if not os.path.exists('_output_logs'): os.mkdir('_output_logs') sys.stdout = open(os.path.join( '_output_logs', g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) if monitorer.get_status(exp_batch, exp_alias + '.yaml', g_conf.PROCESS_NAME)[0] == "Finished": # TODO: print some cool summary or not ? return #Define the dataset. This structure is has the __get_item__ redefined in a way #that you can access the HDFILES positions from the root directory as a in a vector. full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"], g_conf.TRAIN_DATASET_NAME) #augmenter_cpu = iag.AugmenterCPU(g_conf.AUGMENTATION_SUITE_CPU) dataset = CoILDataset(full_dataset, transform=transforms.Compose( [transforms.ToTensor()])) # Creates the sampler, this part is responsible for managing the keys. It divides # all keys depending on the measurements and produces a set of keys for each bach. sampler = BatchSequenceSampler( splitter.control_steer_split(dataset.measurements, dataset.meta_data), g_conf.BATCH_SIZE, g_conf.NUMBER_IMAGES_SEQUENCE, g_conf.SEQUENCE_STRIDE) # The data loader is the multi threaded module from pytorch that release a number of # workers to get all the data. # TODO: batch size an number of workers go to some configuration file data_loader = torch.utils.data.DataLoader(dataset, batch_sampler=sampler, shuffle=False, num_workers=12, pin_memory=False) # By instanciating the augmenter we get a callable that augment images and transform them # into tensors. st = lambda aug: iag.Sometimes(aug, 0.4) oc = lambda aug: iag.Sometimes(aug, 0.3) rl = lambda aug: iag.Sometimes(aug, 0.09) augmenter = iag.Augmenter([iag.ToGPU()] + [ rl(iag.GaussianBlur( (0, 1.5))), # blur images with a sigma between 0 and 1.5 rl( iag.AdditiveGaussianNoise( loc=0, scale=(0.0, 0.05), per_channel=0.5)), # add gaussian noise to images oc(iag.Dropout((0.0, 0.10), per_channel=0.5) ), # randomly remove up to X% of the pixels oc( iag.CoarseDropout( (0.0, 0.10), size_percent=(0.08, 0.2), per_channel=0.5) ), # randomly remove up to X% of the pixels oc(iag.Add((-40, 40), per_channel=0.5) ), # change brightness of images (by -X to Y of original value) st(iag.Multiply((0.10, 2), per_channel=0.2) ), # change brightness of images (X-Y% of original value) rl(iag.ContrastNormalization(( 0.5, 1.5), per_channel=0.5)), # improve or worsen the contrast rl(iag.Grayscale((0.0, 1))), # put grayscale ] # do all of the above in random order ) # augmenter = iag.Augmenter(g_conf.AUGMENTATION_SUITE) # TODO: here there is clearly a posibility to make a cool "conditioning" system. model = CoILModel(g_conf.MODEL_NAME) model.cuda() print(model) criterion = Loss() # TODO: DATASET SIZE SEEMS WEIRD optimizer = optim.Adam(model.parameters(), lr=0.0002) checkpoint_file = get_latest_saved_checkpoint() if checkpoint_file != None: checkpoint = torch.load( os.path.join('_logs', exp_batch, exp_alias, 'checkpoints', str(get_latest_saved_checkpoint()))) iteration = checkpoint['iteration'] accumulated_time = checkpoint['total_time'] best_loss = checkpoint['best_loss'] best_loss_iter = checkpoint['best_loss_iter'] else: iteration = 0 best_loss = 10000.0 accumulated_time = 0 # We accumulate iteration time and keep the average speed best_loss_iter = 0 # TODO: The checkpoint will continue, so it should erase everything up to the iteration best_loss_save = 10000.0 best_loss_save_iter = 0 curr_loss_save = 0.0 print(dataset.meta_data) print(model) capture_time = time.time() model.train() for data in data_loader: input_data, float_data = data #TODO, ADD ITERATION SCHEDULE input_rgb_data = augmenter(0, input_data['rgb']) augment_for_controls = 1 adjustlr = 1 if augment_for_controls: #and self._config.targets_names[j] == "Steer": camera_angle = float_data[:, 26, :] camera_angle = camera_angle.cuda( ) #self._config.variable_names.index('Angle'),i] print("Camera angle", camera_angle[0]) steer = float_data[:, 0, :] # print("Original", steer[0]) steer = steer.cuda() speed = float_data[:, 10, :] speed = speed.cuda() # print (steer) time_use = 1.0 car_length = 3.0 extra_factor = 2.5 threshold = 1.0 pos = camera_angle > 0.0 pos = pos.type(torch.FloatTensor) neg = camera_angle <= 0.0 neg = neg.type(torch.FloatTensor) pos = pos.cuda() neg = neg.cuda() rad_camera_angle = math.pi * (torch.abs(camera_angle)) / 180.0 val = extra_factor * (torch.atan( (rad_camera_angle * car_length) / (time_use * speed + 0.05))) / 3.1415 # print(val) steer -= pos * torch.min(val, torch.tensor([0.6]).cuda()) steer += neg * torch.min(val, torch.tensor([0.6]).cuda()) print("val", val[0]) print("speed", speed[0]) steer = steer.cpu() float_data[:, 0, :] = steer float_data[:, 0, :][float_data[:, 0, :] > 1.0] = 1.0 float_data[:, 0, :][float_data[:, 0, :] < -1.0] = -1.0 #coil_logger.add_images(input_rgb_data) # get the control commands from float_data, size = [120,1] controls = float_data[:, dataset.controls_position(), :] # print(" CONTROLS ", controls.shape) # The output(branches) is a list of 5 branches results, each branch is with size [120,3] model.zero_grad() # print ( 'INPUTS', dataset.extract_inputs(float_data).shape ) branches = model(input_rgb_data, dataset.extract_inputs(float_data).cuda()) #print ("len ",len(branches)) #targets = torch.cat([steer_gt, gas_gt, brake_gt], 1) # print ("Extracted targets ", dataset.extract_targets(float_data).shape[0]) loss = criterion.MSELoss( branches, dataset.extract_targets(float_data).cuda(), controls.cuda(), dataset.extract_inputs(float_data).cuda()) # TODO: All these logging things could go out to clean up the main if loss.data < best_loss: best_loss = loss.data.tolist() best_loss_iter = iteration curr_loss_save += loss.data # Log a random position position = random.randint(0, len(float_data) - 1) output = model.extract_branch(torch.stack(branches[0:4]), controls) error = torch.abs(output - dataset.extract_targets(float_data).cuda()) # TODO: For now we are computing the error for just the correct branch, it could be multi- branch, coil_logger.add_scalar('Loss', loss.data, iteration) loss.backward() optimizer.step() accumulated_time += time.time() - capture_time capture_time = time.time() # TODO: Get only the float_data that are actually generating output # TODO: itearation is repeating , and that is dumb coil_logger.add_message( 'Iterating', { 'Iteration': iteration, 'Loss': loss.data.tolist(), 'Images/s': (iteration * g_conf.BATCH_SIZE) / accumulated_time, 'BestLoss': best_loss, 'BestLossIteration': best_loss_iter, 'BestLossSave': best_loss_save, 'Output': output[position].data.tolist(), 'GroundTruth': dataset.extract_targets( float_data)[position].data.tolist(), 'Error': error[position].data.tolist(), 'Inputs': dataset.extract_inputs(float_data)[position].data.tolist() }, iteration) # TODO: For now we are computing the error for just the correct branch, it could be multi-branch, # TODO: save also the optimizer state dictionary if is_ready_to_save(iteration): state = { 'iteration': iteration, 'state_dict': model.state_dict(), 'best_loss': best_loss, 'total_time': accumulated_time, 'best_loss_iter': best_loss_iter } # TODO : maybe already summarize the best model ??? torch.save( state, os.path.join('_logs', exp_batch, exp_alias, 'checkpoints', str(iteration) + '.pth')) print("before best save") if iteration % 5 == 0 and iteration > 4: curr_loss_save /= 5000.0 if curr_loss_save < best_loss_save: best_loss_save = curr_loss_save curr_loss_save = 0 state = { 'iteration': iteration, 'state_dict': model.state_dict(), 'best_loss': best_loss_save, 'total_time': accumulated_time, 'best_loss_iter': best_loss_save_iter } # TODO : maybe already summarize the best model ??? torch.save( state, os.path.join('_logs', exp_batch, exp_alias, 'best_loss_save' + '.pth')) print("after best save") if iteration == best_loss_iter: state = { 'iteration': iteration, 'state_dict': model.state_dict(), 'best_loss': best_loss, 'total_time': accumulated_time, 'best_loss_iter': best_loss_iter } # TODO : maybe already summarize the best model ??? torch.save( state, os.path.join('_logs', exp_batch, exp_alias, 'best_loss' + '.pth')) iteration += 1 if adjustlr and iteration % 1000: adjust_learning_rate(optimizer, iteration) except KeyboardInterrupt: coil_logger.add_message('Error', {'Message': 'Killed By User'}) except: traceback.print_exc() coil_logger.add_message('Error', {'Message': 'Something Happened'})
def execute(gpu, exp_batch='nocrash', exp_alias='resnet34imnet10S1', suppress_output=True, yaml_file=None): latest = None # try: # We set the visible cuda devices os.environ["CUDA_VISIBLE_DEVICES"] = gpu # At this point the log file with the correct naming is created. path_to_yaml_file = os.path.join('configs', exp_batch, exp_alias + '.yaml') if yaml_file is not None: path_to_yaml_file = os.path.join(yaml_file, exp_alias + '.yaml') merge_with_yaml(path_to_yaml_file) # The validation dataset is always fully loaded, so we fix a very high number of hours # g_conf.NUMBER_OF_HOURS = 10000 # removed to simplify code """ # commenting this segment to simplify code, uncomment if necessary set_type_of_process('validation', dataset_name) if not os.path.exists('_output_logs'): os.mkdir('_output_logs') if suppress_output: sys.stdout = open(os.path.join('_output_logs', exp_alias + '_' + g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) sys.stderr = open(os.path.join('_output_logs', exp_alias + '_err_' + g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) """ # Define the dataset. This structure is has the __get_item__ redefined in a way # that you can access the HDFILES positions from the root directory as a in a vector. full_dataset = os.path.join( os.environ["COIL_DATASET_PATH"], g_conf.DART_COVMAT_DATA ) # dataset used for computing dart covariance matrix augmenter = Augmenter(None) # Definition of the dataset to be used. Preload name is just the validation data name print('full dataset path: ', full_dataset) dataset = CoILDataset(full_dataset, transform=augmenter, preload_name=g_conf.DART_COVMAT_DATA ) # specify DART_COVMAT_DATA in the config file # The data loader is the multi threaded module from pytorch that release a number of # workers to get all the data. data_loader = torch.utils.data.DataLoader( dataset, batch_size=g_conf.BATCH_SIZE, shuffle=False, num_workers=g_conf.NUMBER_OF_LOADING_WORKERS, pin_memory=True) model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION) """ removing this segment to simplify code # The window used to keep track of the trainings l1_window = [] latest = get_latest_evaluated_checkpoint() if latest is not None: # When latest is noe l1_window = coil_logger.recover_loss_window(g_conf.DART_COVMAT_DATA, None) """ model.cuda() best_mse = 1000 best_error = 1000 best_mse_iter = 0 best_error_iter = 0 # modified validation code from here to run a single model checkpoint # used for computing the covariance matrix with the DART model checkpoint checkpoint = torch.load( g_conf.DART_MODEL_CHECKPOINT ) # specify DART_MODEL_CHECKPOINT in the config file checkpoint_iteration = checkpoint['iteration'] print("Validation loaded ", checkpoint_iteration) model.load_state_dict(checkpoint['state_dict']) model.eval() accumulated_mse = 0 accumulated_error = 0 iteration_on_checkpoint = 0 # considering steer, throttle & brake so 3x3 matrix normalized_covariate_shift = torch.zeros(3, 3) print('data_loader size: ', len(data_loader)) for data in data_loader: # Compute the forward pass on a batch from the validation dataset controls = data['directions'] output = model.forward_branch( torch.squeeze(data['rgb']).cuda(), dataset.extract_inputs(data).cuda(), controls) """ removing this segment to simplify code # It could be either waypoints or direct control if 'waypoint1_angle' in g_conf.TARGETS: write_waypoints_output(checkpoint_iteration, output) else: write_regular_output(checkpoint_iteration, output) """ mse = torch.mean( (output - dataset.extract_targets(data).cuda())**2).data.tolist() mean_error = torch.mean( torch.abs(output - dataset.extract_targets(data).cuda())).data.tolist() accumulated_error += mean_error accumulated_mse += mse error = torch.abs(output - dataset.extract_targets(data).cuda()).data.cpu() ### covariate shift segment starts error = error.unsqueeze(dim=2) error_transpose = torch.transpose(error, 1, 2) # compute covariate shift covariate_shift = torch.matmul(error, error_transpose) # expand traj length tensor to Bx3x3 (considering steer, throttle & brake) traj_lengths = torch.stack([ torch.stack([data['current_traj_length'].squeeze(dim=1)] * 3, dim=1) ] * 3, dim=2) covariate_shift = covariate_shift / traj_lengths covariate_shift = torch.sum(covariate_shift, dim=0) # print ('current covariate shift: ', covariate_shift.shape) normalized_covariate_shift += covariate_shift ### covariate shift segment ends total_episodes = data['episode_count'][-1].data iteration_on_checkpoint += 1 if iteration_on_checkpoint % 50 == 0: print('iteration: ', iteration_on_checkpoint) print('total episodes: ', total_episodes) normalized_covariate_shift = normalized_covariate_shift / total_episodes print('normalized covariate shift: ', normalized_covariate_shift.shape, normalized_covariate_shift) # save the matrix to restart directly from the mat file # np.save(os.path.join(g_conf.COVARIANCE_MATRIX_PATH, 'covariance_matrix_%s.npy'%g_conf.DART_COVMATH_DATA), normalized_covariate_shift) return normalized_covariate_shift.numpy() '''
def execute(gpu, exp_batch, exp_alias, dataset_name, validation_set=False): latest = None # We set the visible cuda devices os.environ["CUDA_VISIBLE_DEVICES"] = gpu g_conf.immutable(False) # At this point the log file with the correct naming is created. merge_with_yaml(os.path.join('configs', exp_batch, exp_alias + '.yaml')) # If using validation dataset, fix a very high number of hours if validation_set: g_conf.NUMBER_OF_HOURS = 10000 g_conf.immutable(True) # Define the dataset. full_dataset = [ os.path.join(os.environ["COIL_DATASET_PATH"], dataset_name) ] augmenter = Augmenter(None) if validation_set: # Definition of the dataset to be used. Preload name is just the validation data name dataset = CoILDataset(full_dataset, transform=augmenter, preload_names=[dataset_name]) else: dataset = CoILDataset(full_dataset, transform=augmenter, preload_names=[ str(g_conf.NUMBER_OF_HOURS) + 'hours_' + dataset_name ], train_dataset=True) # The data loader is the multi threaded module from pytorch that release a number of # workers to get all the data. data_loader = torch.utils.data.DataLoader( dataset, batch_size=g_conf.BATCH_SIZE, shuffle=False, num_workers=g_conf.NUMBER_OF_LOADING_WORKERS, pin_memory=True) # Define model model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION) """ ###### Run a single driving benchmark specified by the checkpoint were validation is stale ###### """ if g_conf.FINISH_ON_VALIDATION_STALE is not None: while validation_stale_point( g_conf.FINISH_ON_VALIDATION_STALE) is None: time.sleep(0.1) validation_state_iteration = validation_stale_point( g_conf.FINISH_ON_VALIDATION_STALE) checkpoint = torch.load( os.path.join('_logs', exp_batch, exp_alias, 'checkpoints', str(validation_state_iteration) + '.pth')) print("Validation loaded ", validation_state_iteration) else: """ ##### Main Loop , Run a benchmark for each specified checkpoint on the "Test Configuration" ##### """ while not maximun_checkpoint_reach(latest, g_conf.TEST_SCHEDULE): # Get the correct checkpoint # We check it for some task name, all of then are ready at the same time if is_next_checkpoint_ready(g_conf.TEST_SCHEDULE, control_filename + '_' + task_list[0]): latest = get_next_checkpoint( g_conf.TEST_SCHEDULE, control_filename + '_' + task_list[0]) checkpoint = torch.load( os.path.join('_logs', exp_batch, exp_alias, 'checkpoints', str(latest) + '.pth')) print("Validation loaded ", latest) else: time.sleep(0.1) # Load the model and prepare set it for evaluation model.load_state_dict(checkpoint['state_dict']) model.cuda() model.eval() first_iter = True for data in data_loader: # Compute the forward pass on a batch from the dataset and get the intermediate # representations of the squeeze network if "seg" in g_conf.SENSORS.keys(): perception_rep, speed_rep, intentions_rep = \ model.get_intermediate_representations(data, dataset.extract_inputs(data).cuda(), dataset.extract_intentions(data).cuda()) perception_rep = perception_rep.data.cpu() speed_rep = speed_rep.data.cpu() intentions_rep = intentions_rep.data.cpu() if first_iter: perception_rep_all = perception_rep speed_rep_all = speed_rep intentions_rep_all = intentions_rep else: perception_rep_all = torch.cat( [perception_rep_all, perception_rep], 0) speed_rep_all = torch.cat([speed_rep_all, speed_rep], 0) intentions_rep_all = torch.cat( [intentions_rep_all, intentions_rep], 0) first_iter = False # Save intermediate representations perception_rep_all = perception_rep_all.tolist() speed_rep_all = speed_rep_all.tolist() intentions_rep_all = intentions_rep_all.tolist() np.save( os.path.join( '_preloads', exp_batch + '_' + exp_alias + '_' + dataset_name + '_representations'), [perception_rep_all, speed_rep_all, intentions_rep_all])
def gen_update(self, x_a, x_b, float_data, hyperparameters): self.gen_opt.zero_grad() self.task_opt.zero_grad() # init data full_dataset = hyperparameters['train_dataset_name'] real_dataset = hyperparameters['target_domain_path'] dataset = CoILDataset(full_dataset, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ])) # encode h_a, n_a = self.gen_a.encode(x_a) h_b, n_b = self.gen_b.encode(x_b) # decode (within domain) x_a_recon = self.gen_a.decode(h_a + n_a) x_b_recon = self.gen_b.decode(h_b + n_b) # decode (cross domain) x_ba = self.gen_a.decode(h_b + n_b) x_ab = self.gen_b.decode(h_a + n_a) # encode again h_b_recon, n_b_recon = self.gen_a.encode(x_ba) h_a_recon, n_a_recon = self.gen_b.encode(x_ab) # decode again (if needed) x_aba = self.gen_a.decode( h_a_recon + n_a_recon) if hyperparameters['recon_x_cyc_w'] > 0 else None x_bab = self.gen_b.decode( h_b_recon + n_b_recon) if hyperparameters['recon_x_cyc_w'] > 0 else None # #task part identity_embed = h_a cycle_embed = h_a_recon identity_task = self.netF( identity_embed, Variable(dataset.extract_inputs(float_data)).cuda()) cycle_task = self.netF( cycle_embed, Variable(dataset.extract_inputs(float_data)).cuda()) controls = Variable(float_data[:, dataset.controls_position(), :]) # task loss self.lossF_identity_task = self.Task_Loss.MSELoss( identity_task, Variable(dataset.extract_targets(float_data)).cuda(), controls.cuda(), Variable(dataset.extract_inputs(float_data)).cuda()) self.lossF_cycle_task = self.Task_Loss.MSELoss( cycle_task, Variable(dataset.extract_targets(float_data)).cuda(), controls.cuda(), Variable(dataset.extract_inputs(float_data)).cuda()) self.lossF_task = self.lossF_identity_task + self.lossF_cycle_task # reconstruction loss # print(x_a_recon[0][0][:5][:5]) # print("Help loss:", self.recon_criterion(x_a_recon, x_a)) # print("identity task", identity_task[0]) # print("cycle task", cycle_task[0]) self.loss_gen_recon_x_a = self.recon_criterion(x_a_recon, x_a) self.loss_gen_recon_x_b = self.recon_criterion(x_b_recon, x_b) self.loss_gen_recon_kl_a = self.__compute_kl(h_a) self.loss_gen_recon_kl_b = self.__compute_kl(h_b) self.loss_gen_cyc_x_a = self.recon_criterion(x_aba, x_a) self.loss_gen_cyc_x_b = self.recon_criterion(x_bab, x_b) self.loss_gen_recon_kl_cyc_aba = self.__compute_kl(h_a_recon) self.loss_gen_recon_kl_cyc_bab = self.__compute_kl(h_b_recon) # GAN loss self.loss_gen_adv_a = self.dis_a.calc_gen_loss(x_ba) self.loss_gen_adv_b = self.dis_b.calc_gen_loss(x_ab) # domain-invariant perceptual loss self.loss_gen_vgg_a = self.compute_vgg_loss( self.vgg, x_ba, x_b) if hyperparameters['vgg_w'] > 0 else 0 self.loss_gen_vgg_b = self.compute_vgg_loss( self.vgg, x_ab, x_a) if hyperparameters['vgg_w'] > 0 else 0 # total loss self.loss_gen_total = hyperparameters['gan_w'] * self.loss_gen_adv_a + \ hyperparameters['gan_w'] * self.loss_gen_adv_b + \ hyperparameters['recon_x_w'] * self.loss_gen_recon_x_a + \ hyperparameters['recon_kl_w'] * self.loss_gen_recon_kl_a + \ hyperparameters['recon_x_w'] * self.loss_gen_recon_x_b + \ hyperparameters['recon_kl_w'] * self.loss_gen_recon_kl_b + \ hyperparameters['recon_x_cyc_w'] * self.loss_gen_cyc_x_a + \ hyperparameters['recon_kl_cyc_w'] * self.loss_gen_recon_kl_cyc_aba + \ hyperparameters['recon_x_cyc_w'] * self.loss_gen_cyc_x_b + \ hyperparameters['recon_kl_cyc_w'] * self.loss_gen_recon_kl_cyc_bab + \ hyperparameters['vgg_w'] * self.loss_gen_vgg_a + \ hyperparameters['vgg_w'] * self.loss_gen_vgg_b + \ hyperparameters['task_w'] * self.lossF_task self.loss_gen_total.backward() self.gen_opt.step() self.task_opt.zero_grad() identity_task = self.netF( identity_embed, Variable(dataset.extract_inputs(float_data)).cuda()) cycle_task = self.netF( cycle_embed, Variable(dataset.extract_inputs(float_data)).cuda()) controls = Variable(float_data[:, dataset.controls_position(), :]) # task loss self.lossF_identity_task = self.Task_Loss.MSELoss( identity_task, Variable(dataset.extract_targets(float_data)).cuda(), controls.cuda(), Variable(dataset.extract_inputs(float_data)).cuda()) self.lossF_cycle_task = self.Task_Loss.MSELoss( cycle_task, Variable(dataset.extract_targets(float_data)).cuda(), controls.cuda(), Variable(dataset.extract_inputs(float_data)).cuda()) self.lossF_task = self.lossF_identity_task + self.lossF_cycle_task self.task_opt.step()
def execute(gpu, exp_batch, exp_alias, suppress_output=True, number_of_workers=12): """ The main training function. This functions loads the latest checkpoint for a given, exp_batch (folder) and exp_alias (experiment configuration). With this checkpoint it starts from the beginning or continue some training. Args: gpu: gpus ids for training exp_batch: the folder with the experiments exp_alias: the alias, experiment name suppress_output: if the output are going to be saved on a file number_of_workers: the number of threads used for data loading Returns: None """ try: os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(gpu) g_conf.VARIABLE_WEIGHT = {} # At this point the log file with the correct naming is created. # You merge the yaml file with the global configuration structure. merge_with_yaml(os.path.join('configs', exp_batch, exp_alias + '.yaml')) set_type_of_process('train') # Set the process into loading status. coil_logger.add_message('Loading', {'GPU': gpu}) # Put the output to a separate file if it is the case if suppress_output: if not os.path.exists('_output_logs'): os.mkdir('_output_logs') sys.stdout = open(os.path.join( '_output_logs', exp_alias + '_' + g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) sys.stderr = open(os.path.join( '_output_logs', exp_alias + '_err_' + g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) if coil_logger.check_finish('train'): coil_logger.add_message('Finished', {}) return # Preload option if g_conf.PRELOAD_MODEL_ALIAS is not None: checkpoint = torch.load( os.path.join('_logs', g_conf.PRELOAD_MODEL_BATCH, g_conf.PRELOAD_MODEL_ALIAS, 'checkpoints', str(g_conf.PRELOAD_MODEL_CHECKPOINT) + '.pth')) # Get the latest checkpoint to be loaded # returns none if there are no checkpoints saved for this model checkpoint_file = get_latest_saved_checkpoint() if checkpoint_file is not None: checkpoint = torch.load( os.path.join('_logs', exp_batch, exp_alias, 'checkpoints', str(get_latest_saved_checkpoint()))) iteration = checkpoint['iteration'] best_loss = checkpoint['best_loss'] best_loss_iter = checkpoint['best_loss_iter'] print('iteration: ', iteration, 'best_loss: ', best_loss) else: iteration = 0 best_loss = 10000.0 best_loss_iter = 0 # Define the dataset. This structure is has the __get_item__ redefined in a way # that you can access the positions from the root directory as a in a vector. full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"], g_conf.TRAIN_DATASET_NAME) # By instantiating the augmenter we get a callable that augment images and transform them into tensors. augmenter = Augmenter(g_conf.AUGMENTATION) # Instantiate the class used to read the dataset dataset = CoILDataset(full_dataset, transform=augmenter, preload_name=str(g_conf.NUMBER_OF_HOURS) + 'hours_' + g_conf.TRAIN_DATASET_NAME) print("Loaded dataset") # Creates the sampler, this part is responsible for managing the keys. It divides # all keys depending on the measurements and produces a set of keys for each bach. # define the sampling strategy for mini-batch, different samplers can be found in 'splitter.py' data_loader = select_balancing_strategy(dataset, iteration, number_of_workers) # Instatiate the network architecture model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION) model.cuda() optimizer = optim.Adam(model.parameters(), lr=g_conf.LEARNING_RATE ) # adabound and adamio can also be used here if checkpoint_file is not None or g_conf.PRELOAD_MODEL_ALIAS is not None: model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) accumulated_time = checkpoint['total_time'] loss_window = coil_logger.recover_loss_window('train', iteration) else: # We accumulate iteration time and keep the average speed accumulated_time = 0 loss_window = [] # freeze the perception module weights if required # for m in model.perception.parameters(): # m.requires_grad = False # total trainable parameters model_parameters = filter(lambda p: p.requires_grad, model.parameters()) total_params = sum([np.prod(p.size()) for p in model_parameters]) print('trainable parameters: ', total_params) # multi-gpu print('number of gpus: ', torch.cuda.device_count()) if torch.cuda.device_count() > 1: model = nn.DataParallel(model) criterion = Loss(g_conf.LOSS_FUNCTION) print('Start Training') st = time.time() for data in data_loader: # use this for early stopping if the validation loss is not coming down if g_conf.FINISH_ON_VALIDATION_STALE is not None and \ check_loss_validation_stopped(iteration, g_conf.FINISH_ON_VALIDATION_STALE): break """ #################################### Main optimization loop #################################### """ iteration += 1 if iteration % 1000 == 0: adjust_learning_rate_auto(optimizer, loss_window) # additional learning rate scheduler - cyclic cosine annealing (https://arxiv.org/pdf/1704.00109.pdf) # adjust_learning_rate_cosine_annealing(optimizer, loss_window, iteration) capture_time = time.time() controls = data['directions'] model.zero_grad() branches = model(torch.squeeze(data['rgb'].cuda()), dataset.extract_inputs(data).cuda()) loss_function_params = { 'branches': branches, 'targets': dataset.extract_targets(data).cuda(), 'controls': controls.cuda(), 'inputs': dataset.extract_inputs(data).cuda(), 'branch_weights': g_conf.BRANCH_LOSS_WEIGHT, 'variable_weights': g_conf.VARIABLE_WEIGHT } loss, _ = criterion(loss_function_params) loss.backward() optimizer.step() """ #################################### Saving the model if necessary #################################### """ if is_ready_to_save(iteration): if torch.cuda.device_count() > 1: state_dict_save = model.module.state_dict() else: state_dict_save = model.state_dict() state = { 'iteration': iteration, 'state_dict': state_dict_save, 'best_loss': best_loss, 'total_time': accumulated_time, 'optimizer': optimizer.state_dict(), 'best_loss_iter': best_loss_iter } torch.save( state, os.path.join('_logs', exp_batch, exp_alias, 'checkpoints', str(iteration) + '.pth')) """ ################################################ Adding tensorboard logs. Making calculations for logging purposes. These logs are monitored by the printer module. ################################################# """ coil_logger.add_scalar('Loss', loss.data, iteration) coil_logger.add_image('Image', torch.squeeze(data['rgb']), iteration) if loss.data < best_loss: best_loss = loss.data.tolist() best_loss_iter = iteration # Log a random position position = random.randint(0, len(data) - 1) if torch.cuda.device_count() > 1: output = model.module.extract_branch( torch.stack(branches[0:4]), controls) else: output = model.extract_branch(torch.stack(branches[0:4]), controls) error = torch.abs(output - dataset.extract_targets(data).cuda()) accumulated_time += time.time() - capture_time coil_logger.add_message( 'Iterating', { 'Iteration': iteration, 'Loss': loss.data.tolist(), 'Images/s': (iteration * g_conf.BATCH_SIZE) / accumulated_time, 'BestLoss': best_loss, 'BestLossIteration': best_loss_iter, 'Output': output[position].data.tolist(), 'GroundTruth': dataset.extract_targets(data)[position].data.tolist(), 'Error': error[position].data.tolist(), 'Inputs': dataset.extract_inputs(data)[position].data.tolist() }, iteration) loss_window.append(loss.data.tolist()) coil_logger.write_on_error_csv('train', loss.data) print("Iteration: %d Loss: %f" % (iteration, loss.data)) st = time.time() coil_logger.add_message('Finished', {}) except KeyboardInterrupt: coil_logger.add_message('Error', {'Message': 'Killed By User'}) except RuntimeError as e: coil_logger.add_message('Error', {'Message': str(e)}) except: traceback.print_exc() coil_logger.add_message('Error', {'Message': 'Something Happened'})
def execute(gpu, exp_batch, exp_alias, suppress_output=True, number_of_workers=12): """ The main training function. This functions loads the latest checkpoint for a given, exp_batch (folder) and exp_alias (experiment configuration). With this checkpoint it starts from the beginning or continue some training. Args: gpu: The GPU number exp_batch: the folder with the experiments exp_alias: the alias, experiment name suppress_output: if the output are going to be saved on a file number_of_workers: the number of threads used for data loading Returns: None """ try: # We set the visible cuda devices to select the GPU os.environ["CUDA_VISIBLE_DEVICES"] = gpu g_conf.VARIABLE_WEIGHT = {} # At this point the log file with the correct naming is created. # You merge the yaml file with the global configuration structure. merge_with_yaml(os.path.join('configs', exp_batch, exp_alias + '.yaml')) set_type_of_process('train') # Set the process into loading status. coil_logger.add_message('Loading', {'GPU': gpu}) # Seed RNGs torch.manual_seed(g_conf.MAGICAL_SEED) random.seed(g_conf.MAGICAL_SEED) # Put the output to a separate file if it is the case if suppress_output: if not os.path.exists('_output_logs'): os.mkdir('_output_logs') sys.stdout = open(os.path.join( '_output_logs', exp_alias + '_' + g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) sys.stderr = open(os.path.join( '_output_logs', exp_alias + '_err_' + g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) if coil_logger.check_finish('train'): coil_logger.add_message('Finished', {}) return # Preload option if g_conf.PRELOAD_MODEL_ALIAS is not None: checkpoint = torch.load( os.path.join('_logs', g_conf.PRELOAD_MODEL_BATCH, g_conf.PRELOAD_MODEL_ALIAS, 'checkpoints', str(g_conf.PRELOAD_MODEL_CHECKPOINT) + '.pth')) # Get the latest checkpoint to be loaded # returns none if there are no checkpoints saved for this model checkpoint_file = get_latest_saved_checkpoint() if checkpoint_file is not None: checkpoint = torch.load( os.path.join('_logs', exp_batch, exp_alias, 'checkpoints', str(get_latest_saved_checkpoint()))) iteration = checkpoint['iteration'] best_loss = checkpoint['best_loss'] best_loss_iter = checkpoint['best_loss_iter'] else: iteration = 0 best_loss = 10000.0 best_loss_iter = 0 # Define the dataset. # Can specify a list of training datasets or just a single training dataset if len(g_conf.TRAIN_DATASET_NAMES) == 0: train_dataset_list = [g_conf.TRAIN_DATASET_NAME] else: train_dataset_list = g_conf.TRAIN_DATASET_NAMES full_dataset = [ os.path.join(os.environ["COIL_DATASET_PATH"], dataset_name) for dataset_name in train_dataset_list ] # By instantiating the augmenter we get a callable that augment images and transform them # into tensors. augmenter = Augmenter(g_conf.AUGMENTATION) # Instantiate the class used to read a dataset. The coil dataset generator # can be found dataset = CoILDataset(full_dataset, transform=augmenter, preload_names=[ str(g_conf.NUMBER_OF_HOURS) + 'hours_' + dataset_name for dataset_name in train_dataset_list ], train_dataset=True) print("Loaded dataset") # Create dataloader, model, and optimizer data_loader = select_balancing_strategy(dataset, iteration, number_of_workers) model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION) model.cuda() optimizer = optim.Adam(model.parameters(), lr=g_conf.LEARNING_RATE) # If we have a previous checkpoint, load model, optimizer, and record of previous # train loss values (used for the learning rate schedule) if checkpoint_file is not None or g_conf.PRELOAD_MODEL_ALIAS is not None: model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) accumulated_time = checkpoint['total_time'] loss_window = coil_logger.recover_loss_window('train', iteration) else: # We accumulate iteration time and keep the average speed accumulated_time = 0 loss_window = [] print("Before the loss") # Define control loss function criterion = Loss(g_conf.LOSS_FUNCTION) if iteration == 0 and is_ready_to_save(iteration): state = { 'iteration': iteration, 'state_dict': model.state_dict(), 'best_loss': best_loss, 'total_time': accumulated_time, 'optimizer': optimizer.state_dict(), 'best_loss_iter': best_loss_iter } torch.save( state, os.path.join('_logs', exp_batch, exp_alias, 'checkpoints', str(iteration) + '.pth')) # Training loop for data in data_loader: # Basically in this mode of execution, we validate every X Steps, if it goes up 3 times, # add a stop on the _logs folder that is going to be read by this process if g_conf.FINISH_ON_VALIDATION_STALE is not None and \ check_loss_validation_stopped(iteration, g_conf.FINISH_ON_VALIDATION_STALE): break """ #################################### Main optimization loop #################################### """ iteration += 1 # Adjust learning rate based on training loss if iteration % 1000 == 0: adjust_learning_rate_auto(optimizer, loss_window) capture_time = time.time() model.zero_grad() controls = data['directions'] # Run model forward and get outputs # First case corresponds to training squeeze network, second case corresponds to training driving model without # mimicking losses, last case corresponds to training mimic network if "seg" in g_conf.SENSORS.keys(): branches = model(data, dataset.extract_inputs(data).cuda(), dataset.extract_intentions(data).cuda()) elif not g_conf.USE_REPRESENTATION_LOSS: branches = model(data, dataset.extract_inputs(data).cuda()) else: branches, intermediate_reps = model( data, dataset.extract_inputs(data).cuda()) # Compute control loss targets_to_use = dataset.extract_targets(data) loss_function_params = { 'branches': branches, 'targets': targets_to_use.cuda(), 'controls': controls.cuda(), 'inputs': dataset.extract_inputs(data).cuda(), 'branch_weights': g_conf.BRANCH_LOSS_WEIGHT, 'variable_weights': g_conf.VARIABLE_WEIGHT } loss, _ = criterion(loss_function_params) # Compute mimicking loss if g_conf.USE_REPRESENTATION_LOSS: expert_reps = dataset.extract_representations(data) # Seg mask mimicking loss if g_conf.USE_PERCEPTION_REP_LOSS: perception_rep_loss_elementwise = ( intermediate_reps[0] - expert_reps[0].cuda())**2 perception_rep_loss = g_conf.PERCEPTION_REP_WEIGHT * torch.sum( perception_rep_loss_elementwise) / branches[0].shape[0] else: perception_rep_loss = torch.tensor(0.).cuda() # Speed mimicking loss if g_conf.USE_SPEED_REP_LOSS: speed_rep_loss_elementwise = (intermediate_reps[1] - expert_reps[1].cuda())**2 speed_rep_loss = g_conf.SPEED_REP_WEIGHT * torch.sum( speed_rep_loss_elementwise) / branches[0].shape[0] else: speed_rep_loss = torch.tensor(0.).cuda() # Stop intentions mimicking loss if g_conf.USE_INTENTION_REP_LOSS: intentions_rep_loss_elementwise = ( intermediate_reps[2] - expert_reps[2].cuda())**2 intentions_rep_loss = g_conf.INTENTIONS_REP_WEIGHT * torch.sum( intentions_rep_loss_elementwise) / branches[0].shape[0] else: intentions_rep_loss = torch.tensor(0.).cuda() rep_loss = g_conf.REP_LOSS_WEIGHT * ( perception_rep_loss + speed_rep_loss + intentions_rep_loss) overall_loss = loss + rep_loss else: overall_loss = loss overall_loss.backward() optimizer.step() """ #################################### Saving the model if necessary #################################### """ if is_ready_to_save(iteration): state = { 'iteration': iteration, 'state_dict': model.state_dict(), 'best_loss': best_loss, 'total_time': accumulated_time, 'optimizer': optimizer.state_dict(), 'best_loss_iter': best_loss_iter } torch.save( state, os.path.join('_logs', exp_batch, exp_alias, 'checkpoints', str(iteration) + '.pth')) """ ################################################ Adding tensorboard logs. Making calculations for logging purposes. These logs are monitored by the printer module. ################################################# """ coil_logger.add_scalar('Loss', loss.data, iteration) if g_conf.USE_REPRESENTATION_LOSS: coil_logger.add_scalar('Perception Rep Loss', perception_rep_loss.data, iteration) coil_logger.add_scalar('Speed Rep Loss', speed_rep_loss.data, iteration) coil_logger.add_scalar('Intentions Rep Loss', intentions_rep_loss.data, iteration) coil_logger.add_scalar('Overall Rep Loss', rep_loss.data, iteration) coil_logger.add_scalar('Total Loss', overall_loss.data, iteration) if 'rgb' in data: coil_logger.add_image('Image', torch.squeeze(data['rgb']), iteration) if overall_loss.data < best_loss: best_loss = overall_loss.data.tolist() best_loss_iter = iteration # Log a random position position = random.randint(0, len(data) - 1) output = model.extract_branch(torch.stack(branches[0:4]), controls) error = torch.abs(output - targets_to_use.cuda()) accumulated_time += time.time() - capture_time # Log to terminal and log file if g_conf.USE_REPRESENTATION_LOSS: coil_logger.add_message( 'Iterating', { 'Iteration': iteration, 'Loss': overall_loss.data.tolist(), 'Control Loss': loss.data.tolist(), 'Rep Loss': rep_loss.data.tolist(), 'Images/s': (iteration * g_conf.BATCH_SIZE) / accumulated_time, 'BestLoss': best_loss, 'BestLossIteration': best_loss_iter, 'Output': output[position].data.tolist(), 'GroundTruth': targets_to_use[position].data.tolist(), 'Error': error[position].data.tolist(), 'Inputs': dataset.extract_inputs(data)[position].data.tolist() }, iteration) else: coil_logger.add_message( 'Iterating', { 'Iteration': iteration, 'Loss': loss.data.tolist(), 'Images/s': (iteration * g_conf.BATCH_SIZE) / accumulated_time, 'BestLoss': best_loss, 'BestLossIteration': best_loss_iter, 'Output': output[position].data.tolist(), 'GroundTruth': targets_to_use[position].data.tolist(), 'Error': error[position].data.tolist(), 'Inputs': dataset.extract_inputs(data)[position].data.tolist() }, iteration) # Save training loss history (useful for restoring training runs since learning rate is adjusted # based on training loss) loss_window.append(overall_loss.data.tolist()) coil_logger.write_on_error_csv('train', overall_loss.data) print("Iteration: %d Loss: %f" % (iteration, overall_loss.data)) coil_logger.add_message('Finished', {}) except KeyboardInterrupt: coil_logger.add_message('Error', {'Message': 'Killed By User'}) except RuntimeError as e: coil_logger.add_message('Error', {'Message': str(e)}) except: traceback.print_exc() coil_logger.add_message('Error', {'Message': 'Something Happened'})
def execute(gpu, exp_batch, exp_alias): os.environ["CUDA_VISIBLE_DEVICES"] = gpu merge_with_yaml(os.path.join('configs', exp_batch, exp_alias + '.yaml')) set_type_of_process('train') coil_logger.add_message('Loading', {'GPU': gpu}) if not os.path.exists('_output_logs'): os.mkdir('_output_logs') sys.stdout = open(os.path.join( '_output_logs', g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) if monitorer.get_status(exp_batch, exp_alias + '.yaml', g_conf.PROCESS_NAME)[0] == "Finished": return full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"], g_conf.TRAIN_DATASET_NAME) dataset = CoILDataset(full_dataset, transform=transforms.Compose([transforms.ToTensor() ])) sampler = BatchSequenceSampler( splitter.control_steer_split(dataset.measurements, dataset.meta_data), g_conf.BATCH_SIZE, g_conf.NUMBER_IMAGES_SEQUENCE, g_conf.SEQUENCE_STRIDE) data_loader = torch.utils.data.DataLoader(dataset, batch_sampler=sampler, shuffle=False, num_workers=6, pin_memory=True) l1weight = g_conf.L1_WEIGHT image_size = tuple([88, 200]) if g_conf.TRAIN_TYPE == 'WGAN': clamp_value = g_conf.CLAMP n_critic = g_conf.N_CRITIC print("Configurations of ", exp_alias) print("GANMODEL_NAME", g_conf.GANMODEL_NAME) print("LOSS_FUNCTION", g_conf.LOSS_FUNCTION) print("LR_G, LR_D, LR", g_conf.LR_G, g_conf.LR_D, g_conf.LEARNING_RATE) print("SKIP", g_conf.SKIP) print("TYPE", g_conf.TYPE) print("L1 WEIGHT", g_conf.L1_WEIGHT) print("LAB SMOOTH", g_conf.LABSMOOTH) if g_conf.GANMODEL_NAME == 'LSDcontrol': netD = ganmodels._netD(loss=g_conf.LOSS_FUNCTION).cuda() netG = ganmodels._netG(loss=g_conf.LOSS_FUNCTION, skip=g_conf.SKIP).cuda() elif g_conf.GANMODEL_NAME == 'LSDcontrol_nopatch': netD = ganmodels_nopatch._netD(loss=g_conf.LOSS_FUNCTION).cuda() netG = ganmodels_nopatch._netG(loss=g_conf.LOSS_FUNCTION).cuda() elif g_conf.GANMODEL_NAME == 'LSDcontrol_nopatch_smaller': netD = ganmodels_nopatch_smaller._netD( loss=g_conf.LOSS_FUNCTION).cuda() netG = ganmodels_nopatch_smaller._netG( loss=g_conf.LOSS_FUNCTION).cuda() elif g_conf.GANMODEL_NAME == 'LSDcontrol_task': netD = ganmodels_task._netD(loss=g_conf.LOSS_FUNCTION).cuda() netG = ganmodels_task._netG(loss=g_conf.LOSS_FUNCTION).cuda() netF = ganmodels_task._netF(loss=g_conf.LOSS_FUNCTION).cuda() if g_conf.PRETRAINED == 'RECON': netF_statedict = torch.load('netF_GAN_Pretrained.wts') netF.load_state_dict(netF_statedict) elif g_conf.PRETRAINED == 'IL': model_IL = torch.load('best_loss_20-06_EpicClearWeather.pth') model_IL_state_dict = model_IL['state_dict'] netF_state_dict = netF.state_dict() for i, keys in enumerate( zip(netF_state_dict.keys(), model_IL_state_dict.keys())): newkey, oldkey = keys if newkey.split('.')[0] == "branch" and oldkey.split( '.')[0] == "branches": print("No Transfer of ", newkey, " to ", oldkey) else: print("Transferring ", newkey, " to ", oldkey) netF_state_dict[newkey] = model_IL_state_dict[oldkey] netF.load_state_dict(netF_state_dict) init_weights(netD) init_weights(netG) #do init for netF also later but now it is in the model code itself print(netD) print(netF) print(netG) optimD = torch.optim.Adam(netD.parameters(), lr=g_conf.LR_D, betas=(0.5, 0.999)) optimG = torch.optim.Adam(netG.parameters(), lr=g_conf.LR_G, betas=(0.5, 0.999)) if g_conf.TYPE == 'task': optimF = torch.optim.Adam(netF.parameters(), lr=g_conf.LEARNING_RATE) Task_Loss = TaskLoss() if g_conf.LOSS_FUNCTION == 'LSGAN': Loss = torch.nn.MSELoss().cuda() elif g_conf.LOSS_FUNCTION == 'NORMAL': Loss = torch.nn.BCEWithLogitsLoss().cuda() L1_loss = torch.nn.L1Loss().cuda() iteration = 0 best_loss_iter_F = 0 best_loss_iter_G = 0 best_lossF = 1000000.0 best_lossD = 1000000.0 best_lossG = 1000000.0 accumulated_time = 0 lossF = Variable(torch.Tensor([100.0])) lossG_adv = Variable(torch.Tensor([100.0])) lossG_smooth = Variable(torch.Tensor([100.0])) lossG = Variable(torch.Tensor([100.0])) netG.train() netD.train() netF.train() capture_time = time.time() if not os.path.exists('./imgs_' + exp_alias): os.mkdir('./imgs_' + exp_alias) #TODO put family for losses fake_img_pool = ImagePool(50) for data in data_loader: set_requires_grad(netD, True) set_requires_grad(netF, True) set_requires_grad(netG, True) # print("ITERATION:", iteration) val = 0.0 input_data, float_data = data inputs = input_data['rgb'].cuda() inputs = inputs.squeeze(1) inputs_in = inputs - val #subtracted by 0.5 #TODO: make sure the F network does not get optimized by G optim controls = float_data[:, dataset.controls_position(), :] embed, branches = netF(inputs_in, dataset.extract_inputs(float_data).cuda()) print("Branch Outputs:::", branches[0][0]) embed_inputs = embed fake_inputs = netG(embed_inputs) fake_inputs_in = fake_inputs if iteration % 500 == 0: imgs_to_save = torch.cat( (inputs_in[:2] + val, fake_inputs_in[:2] + val), 0).cpu().data vutils.save_image(imgs_to_save, './imgs_' + exp_alias + '/' + str(iteration) + '_real_and_fake.png', normalize=True) coil_logger.add_image("Images", imgs_to_save, iteration) ##--------------------Discriminator part!!!!!!!!!!-------------------## set_requires_grad(netD, True) set_requires_grad(netF, False) set_requires_grad(netG, False) optimD.zero_grad() ##fake # fake_inputs_forD = fake_img_pool.query(fake_inputs) outputsD_fake_forD = netD(fake_inputs) labsize = outputsD_fake_forD.size() labels_fake = torch.zeros(labsize) #Fake labels label_fake_noise = torch.rand( labels_fake.size()) * 0.1 #Label smoothing if g_conf.LABSMOOTH == 1: labels_fake = labels_fake + label_fake_noise labels_fake = Variable(labels_fake).cuda() lossD_fake = torch.mean( outputsD_fake_forD) #Loss(outputsD_fake_forD, labels_fake) ##real outputsD_real = netD(inputs_in) labsize = outputsD_real.size() labels_real = torch.ones(labsize) #Real labels label_real_noise = torch.rand( labels_real.size()) * 0.1 #Label smoothing if g_conf.LABSMOOTH == 1: labels_real = labels_real - label_real_noise labels_real = Variable(labels_real).cuda() lossD_real = -1.0 * torch.mean( outputsD_real) #Loss(outputsD_real, labels_real) ### Gradient Penalty ### gradient_penalty = calc_gradient_penalty(netD, inputs, fake_inputs) # alpha = torch.rand((g_conf.BATCH_SIZE, 1, 1, 1)) # alpha = alpha.cuda() # # x_hat = alpha * inputs.data + (1 - alpha) * fake_inputs.data # x_hat.requires_grad = True # # pred_hat = netD(x_hat) # gradients = grad(outputs=pred_hat, inputs=x_hat, grad_outputs=torch.ones(pred_hat.size()).cuda(), # create_graph=True, retain_graph=True, only_inputs=True)[0] # # gradient_penalty = 10 * ((gradients.view(gradients.size()[0], -1).norm(2, 1) - 1) ** 2).mean() #Discriminator updates lossD = torch.mean( outputsD_fake_forD - outputsD_real) + gradient_penalty #(lossD_real + lossD_fake) * 0.5 # lossD /= len(inputs) print("Loss d", lossD) lossD.backward(retain_graph=True) optimD.step() # if g_conf.TRAIN_TYPE == 'WGAN': # for p in netD.parameters(): # p.data.clamp_(-clamp_value, clamp_value) coil_logger.add_scalar('Total LossD', lossD.data, iteration) coil_logger.add_scalar('Real LossD', lossD_real.data / len(inputs), iteration) coil_logger.add_scalar('Fake LossD', lossD_fake.data / len(inputs), iteration) ##--------------------Generator part!!!!!!!!!!-----------------------## set_requires_grad(netD, False) set_requires_grad(netF, False) set_requires_grad(netG, True) if ((iteration + 1) % n_critic) == 0: optimG.zero_grad() outputsD_fake_forG = netD(fake_inputs) #Generator updates lossG_adv = -1.0 * torch.mean( outputsD_fake_forG) #Loss(outputsD_fake_forG, labels_real) lossG_smooth = L1_loss(fake_inputs, inputs) lossG = (lossG_adv + l1weight * lossG_smooth) / (1.0 + l1weight) # lossG /= len(inputs) print(lossG) lossG.backward(retain_graph=True) optimG.step() #####Task network updates########################## set_requires_grad(netD, False) set_requires_grad(netF, True) set_requires_grad(netG, False) optimF.zero_grad() lossF = Variable(torch.Tensor()) lossF = Task_Loss.MSELoss( branches, dataset.extract_targets(float_data).cuda(), controls.cuda(), dataset.extract_inputs(float_data).cuda()) coil_logger.add_scalar('Task Loss', lossF.data, iteration) lossF.backward() optimF.step() coil_logger.add_scalar('Total LossG', lossG.data, iteration) coil_logger.add_scalar('Adv LossG', lossG_adv.data / len(inputs), iteration) coil_logger.add_scalar('Smooth LossG', lossG_smooth.data / len(inputs), iteration) #optimization for one iter done! position = random.randint(0, len(float_data) - 1) if lossD.data < best_lossD: best_lossD = lossD.data.tolist() # print (lossG.item(), best_lossG) if lossG.item() < best_lossG: best_lossG = lossG.item() best_loss_iter_G = iteration if lossF.item() < best_lossF: best_lossF = lossF.item() best_loss_iter_F = iteration accumulated_time += time.time() - capture_time capture_time = time.time() print("LossD", lossD.data.tolist(), "LossG", lossG.data.tolist(), "BestLossD", best_lossD, "BestLossG", best_lossG, "LossF", lossF, "BestLossF", best_lossF, "Iteration", iteration, "Best Loss Iteration G", best_loss_iter_G, "Best Loss Iteration F", best_loss_iter_F) coil_logger.add_message( 'Iterating', { 'Iteration': iteration, 'LossD': lossD.data.tolist(), 'LossG': lossG.data.tolist(), 'Images/s': (iteration * g_conf.BATCH_SIZE) / accumulated_time, 'BestLossD': best_lossD, 'BestLossG': best_lossG, 'BestLossIterationG': best_loss_iter_G, 'BestLossF': best_lossF, 'BestLossIterationF': best_loss_iter_F, 'GroundTruth': dataset.extract_targets(float_data)[position].data.tolist(), 'Inputs': dataset.extract_inputs(float_data)[position].data.tolist() }, iteration) if is_ready_to_save(iteration): state = { 'iteration': iteration, 'stateD_dict': netD.state_dict(), 'stateG_dict': netG.state_dict(), 'stateF_dict': netF.state_dict(), 'best_lossD': best_lossD, 'best_lossG': best_lossG, 'total_time': accumulated_time, 'best_loss_iter_G': best_loss_iter_G, 'best_loss_iter_F': best_loss_iter_F } torch.save( state, os.path.join('/datatmp/Experiments/rohitgan/_logs', exp_batch, exp_alias, 'checkpoints', str(iteration) + '.pth')) if iteration == best_loss_iter_G and iteration > 10000: state = { 'iteration': iteration, 'stateD_dict': netD.state_dict(), 'stateG_dict': netG.state_dict(), 'stateF_dict': netF.state_dict(), 'best_lossD': best_lossD, 'best_lossG': best_lossG, 'total_time': accumulated_time, 'best_loss_iter_G': best_loss_iter_G } torch.save( state, os.path.join('/datatmp/Experiments/rohitgan/_logs', exp_batch, exp_alias, 'best_modelG' + '.pth')) if iteration == best_loss_iter_F and iteration > 10000: state = { 'iteration': iteration, 'stateD_dict': netD.state_dict(), 'stateG_dict': netG.state_dict(), 'stateF_dict': netF.state_dict(), 'best_lossD': best_lossD, 'best_lossG': best_lossG, 'best_lossF': best_lossF, 'total_time': accumulated_time, 'best_loss_iter_F': best_loss_iter_F } torch.save( state, os.path.join('/datatmp/Experiments/rohitgan/_logs', exp_batch, exp_alias, 'best_modelF' + '.pth')) iteration += 1
def execute(gpu, exp_batch, exp_alias, dataset_name, suppress_output): latest = None try: # We set the visible cuda devices os.environ["CUDA_VISIBLE_DEVICES"] = gpu # At this point the log file with the correct naming is created. merge_with_yaml(os.path.join('configs', exp_batch, exp_alias + '.yaml')) # The validation dataset is always fully loaded, so we fix a very high number of hours g_conf.NUMBER_OF_HOURS = 10000 set_type_of_process('validation', dataset_name) if not os.path.exists('_output_logs'): os.mkdir('_output_logs') if suppress_output: sys.stdout = open(os.path.join( '_output_logs', exp_alias + '_' + g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) sys.stderr = open(os.path.join( '_output_logs', exp_alias + '_err_' + g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) # Define the dataset. full_dataset = [ os.path.join(os.environ["COIL_DATASET_PATH"], dataset_name) ] augmenter = Augmenter(None) # Definition of the dataset to be used. Preload name is just the validation data name dataset = CoILDataset(full_dataset, transform=augmenter, preload_names=[dataset_name]) # The data loader is the multi threaded module from pytorch that release a number of # workers to get all the data. data_loader = torch.utils.data.DataLoader( dataset, batch_size=g_conf.BATCH_SIZE, shuffle=False, num_workers=g_conf.NUMBER_OF_LOADING_WORKERS, pin_memory=True) # Create model. model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION) # The window used to keep track of the validation loss l1_window = [] # If we have evaluated a checkpoint, get the validation losses of all the previously # evaluated checkpoints (validation loss is used for early stopping) latest = get_latest_evaluated_checkpoint() if latest is not None: # When latest is noe l1_window = coil_logger.recover_loss_window(dataset_name, None) model.cuda() best_mse = 1000 best_error = 1000 best_mse_iter = 0 best_error_iter = 0 # Loop to validate all checkpoints as they are saved during training while not maximun_checkpoint_reach(latest, g_conf.TEST_SCHEDULE): if is_next_checkpoint_ready(g_conf.TEST_SCHEDULE): with torch.no_grad(): # Get and load latest checkpoint latest = get_next_checkpoint(g_conf.TEST_SCHEDULE) checkpoint = torch.load( os.path.join('_logs', exp_batch, exp_alias, 'checkpoints', str(latest) + '.pth')) checkpoint_iteration = checkpoint['iteration'] print("Validation loaded ", checkpoint_iteration) model.load_state_dict(checkpoint['state_dict']) model.eval() accumulated_mse = 0 accumulated_error = 0 iteration_on_checkpoint = 0 if g_conf.USE_REPRESENTATION_LOSS: accumulated_perception_rep_mse = 0 accumulated_speed_rep_mse = 0 accumulated_intentions_rep_mse = 0 accumulated_rep_mse = 0 accumulated_perception_rep_error = 0 accumulated_speed_rep_error = 0 accumulated_intentions_rep_error = 0 accumulated_rep_error = 0 # Validation loop for data in data_loader: # Compute the forward pass on a batch from the validation dataset controls = data['directions'] # Run model forward and get outputs # First case corresponds to squeeze network, second case corresponds to driving model without # mimicking losses, last case corresponds to mimic network if "seg" in g_conf.SENSORS.keys(): output = model.forward_branch( data, dataset.extract_inputs(data).cuda(), controls, dataset.extract_intentions(data).cuda()) elif not g_conf.USE_REPRESENTATION_LOSS: output = model.forward_branch( data, dataset.extract_inputs(data).cuda(), controls) else: output, intermediate_reps = model.forward_branch( data, dataset.extract_inputs(data).cuda(), controls) write_regular_output(checkpoint_iteration, output) # Compute control loss on current validation batch and accumulate it targets_to_use = dataset.extract_targets(data) mse = torch.mean( (output - targets_to_use.cuda())**2).data.tolist() mean_error = torch.mean( torch.abs(output - targets_to_use.cuda())).data.tolist() accumulated_error += mean_error accumulated_mse += mse error = torch.abs(output - targets_to_use.cuda()) # Compute mimicking losses on current validation batch and accumulate it if g_conf.USE_REPRESENTATION_LOSS: expert_reps = dataset.extract_representations(data) # First L1 losses (seg mask, speed, intention mimicking losses) if g_conf.USE_PERCEPTION_REP_LOSS: perception_rep_loss = torch.sum( torch.abs(intermediate_reps[0] - expert_reps[0].cuda()) ).data.tolist() / (3 * output.shape[0]) else: perception_rep_loss = 0 if g_conf.USE_SPEED_REP_LOSS: speed_rep_loss = torch.sum( torch.abs(intermediate_reps[1] - expert_reps[1].cuda()) ).data.tolist() / (3 * output.shape[0]) else: speed_rep_loss = 0 if g_conf.USE_INTENTION_REP_LOSS: intentions_rep_loss = torch.sum( torch.abs(intermediate_reps[2] - expert_reps[2].cuda()) ).data.tolist() / (3 * output.shape[0]) else: intentions_rep_loss = 0 rep_error = g_conf.REP_LOSS_WEIGHT * ( perception_rep_loss + speed_rep_loss + intentions_rep_loss) accumulated_perception_rep_error += perception_rep_loss accumulated_speed_rep_error += speed_rep_loss accumulated_intentions_rep_error += intentions_rep_loss accumulated_rep_error += rep_error # L2 losses now if g_conf.USE_PERCEPTION_REP_LOSS: perception_rep_loss = torch.sum( (intermediate_reps[0] - expert_reps[0].cuda())** 2).data.tolist() / (3 * output.shape[0]) else: perception_rep_loss = 0 if g_conf.USE_SPEED_REP_LOSS: speed_rep_loss = torch.sum( (intermediate_reps[1] - expert_reps[1].cuda())** 2).data.tolist() / (3 * output.shape[0]) else: speed_rep_loss = 0 if g_conf.USE_INTENTION_REP_LOSS: intentions_rep_loss = torch.sum( (intermediate_reps[2] - expert_reps[2].cuda())** 2).data.tolist() / (3 * output.shape[0]) else: intentions_rep_loss = 0 rep_mse = g_conf.REP_LOSS_WEIGHT * ( perception_rep_loss + speed_rep_loss + intentions_rep_loss) accumulated_perception_rep_mse += perception_rep_loss accumulated_speed_rep_mse += speed_rep_loss accumulated_intentions_rep_mse += intentions_rep_loss accumulated_rep_mse += rep_mse # Log a random position position = random.randint( 0, len(output.data.tolist()) - 1) # Logging if g_conf.USE_REPRESENTATION_LOSS: total_mse = mse + rep_mse total_error = mean_error + rep_error coil_logger.add_message( 'Iterating', { 'Checkpoint': latest, 'Iteration': (str(iteration_on_checkpoint * 120) + '/' + str(len(dataset))), 'MeanError': mean_error, 'MSE': mse, 'RepMeanError': rep_error, 'RepMSE': rep_mse, 'MeanTotalError': total_error, 'TotalMSE': total_mse, 'Output': output[position].data.tolist(), 'GroundTruth': targets_to_use[position].data.tolist(), 'Error': error[position].data.tolist(), 'Inputs': dataset.extract_inputs( data)[position].data.tolist() }, latest) else: coil_logger.add_message( 'Iterating', { 'Checkpoint': latest, 'Iteration': (str(iteration_on_checkpoint * 120) + '/' + str(len(dataset))), 'MeanError': mean_error, 'MSE': mse, 'Output': output[position].data.tolist(), 'GroundTruth': targets_to_use[position].data.tolist(), 'Error': error[position].data.tolist(), 'Inputs': dataset.extract_inputs( data)[position].data.tolist() }, latest) iteration_on_checkpoint += 1 if g_conf.USE_REPRESENTATION_LOSS: print("Iteration %d on Checkpoint %d : Error %f" % (iteration_on_checkpoint, checkpoint_iteration, total_error)) else: print("Iteration %d on Checkpoint %d : Error %f" % (iteration_on_checkpoint, checkpoint_iteration, mean_error)) """ ######## Finish a round of validation, write results, wait for the next ######## """ # Compute average L1 and L2 losses over whole round of validation and log them checkpoint_average_mse = accumulated_mse / ( len(data_loader)) checkpoint_average_error = accumulated_error / ( len(data_loader)) coil_logger.add_scalar('L2 Loss', checkpoint_average_mse, latest, True) coil_logger.add_scalar('Loss', checkpoint_average_error, latest, True) if g_conf.USE_REPRESENTATION_LOSS: checkpoint_average_perception_rep_mse = accumulated_perception_rep_mse / ( len(data_loader)) checkpoint_average_speed_rep_mse = accumulated_speed_rep_mse / ( len(data_loader)) checkpoint_average_intentions_rep_mse = accumulated_intentions_rep_mse / ( len(data_loader)) checkpoint_average_rep_mse = accumulated_rep_mse / ( len(data_loader)) checkpoint_average_total_mse = checkpoint_average_mse + checkpoint_average_rep_mse checkpoint_average_perception_rep_error = accumulated_perception_rep_error / ( len(data_loader)) checkpoint_average_speed_rep_error = accumulated_speed_rep_error / ( len(data_loader)) checkpoint_average_intentions_rep_error = accumulated_intentions_rep_error / ( len(data_loader)) checkpoint_average_rep_error = accumulated_rep_error / ( len(data_loader)) checkpoint_average_total_error = checkpoint_average_error + checkpoint_average_rep_mse # Log L1/L2 loss terms coil_logger.add_scalar( 'Perception Rep Loss', checkpoint_average_perception_rep_mse, latest, True) coil_logger.add_scalar( 'Speed Rep Loss', checkpoint_average_speed_rep_mse, latest, True) coil_logger.add_scalar( 'Intentions Rep Loss', checkpoint_average_intentions_rep_mse, latest, True) coil_logger.add_scalar('Overall Rep Loss', checkpoint_average_rep_mse, latest, True) coil_logger.add_scalar('Total L2 Loss', checkpoint_average_total_mse, latest, True) coil_logger.add_scalar( 'Perception Rep Error', checkpoint_average_perception_rep_error, latest, True) coil_logger.add_scalar( 'Speed Rep Error', checkpoint_average_speed_rep_error, latest, True) coil_logger.add_scalar( 'Intentions Rep Error', checkpoint_average_intentions_rep_error, latest, True) coil_logger.add_scalar('Total Rep Error', checkpoint_average_rep_error, latest, True) coil_logger.add_scalar('Total Loss', checkpoint_average_total_error, latest, True) else: checkpoint_average_total_mse = checkpoint_average_mse checkpoint_average_total_error = checkpoint_average_error if checkpoint_average_total_mse < best_mse: best_mse = checkpoint_average_total_mse best_mse_iter = latest if checkpoint_average_total_error < best_error: best_error = checkpoint_average_total_error best_error_iter = latest # Print for logging / to terminal validation results if g_conf.USE_REPRESENTATION_LOSS: coil_logger.add_message( 'Iterating', { 'Summary': { 'Control Error': checkpoint_average_error, 'Control Loss': checkpoint_average_mse, 'Rep Error': checkpoint_average_rep_error, 'Rep Loss': checkpoint_average_rep_mse, 'Error': checkpoint_average_total_error, 'Loss': checkpoint_average_total_mse, 'BestError': best_error, 'BestMSE': best_mse, 'BestMSECheckpoint': best_mse_iter, 'BestErrorCheckpoint': best_error_iter }, 'Checkpoint': latest }, latest) else: coil_logger.add_message( 'Iterating', { 'Summary': { 'Error': checkpoint_average_error, 'Loss': checkpoint_average_mse, 'BestError': best_error, 'BestMSE': best_mse, 'BestMSECheckpoint': best_mse_iter, 'BestErrorCheckpoint': best_error_iter }, 'Checkpoint': latest }, latest) # Save validation loss history (validation loss is used for early stopping) l1_window.append(checkpoint_average_total_error) coil_logger.write_on_error_csv( dataset_name, checkpoint_average_total_error) # Early stopping if g_conf.FINISH_ON_VALIDATION_STALE is not None: if dlib.count_steps_without_decrease(l1_window) > 3 and \ dlib.count_steps_without_decrease_robust(l1_window) > 3: coil_logger.write_stop(dataset_name, latest) break else: latest = get_latest_evaluated_checkpoint() time.sleep(1) coil_logger.add_message('Loading', {'Message': 'Waiting Checkpoint'}) print("Waiting for the next Validation") coil_logger.add_message('Finished', {}) except KeyboardInterrupt: coil_logger.add_message('Error', {'Message': 'Killed By User'}) # We erase the output that was unfinished due to some process stop. if latest is not None: coil_logger.erase_csv(latest) except RuntimeError as e: if latest is not None: coil_logger.erase_csv(latest) coil_logger.add_message('Error', {'Message': str(e)}) except: traceback.print_exc() coil_logger.add_message('Error', {'Message': 'Something Happened'}) # We erase the output that was unfinished due to some process stop. if latest is not None: coil_logger.erase_csv(latest)
def execute(gpu, exp_batch, exp_alias): os.environ["CUDA_VISIBLE_DEVICES"] = gpu merge_with_yaml(os.path.join('configs', exp_batch, exp_alias + '.yaml')) set_type_of_process('train') coil_logger.add_message('Loading', {'GPU': gpu}) if not os.path.exists('_output_logs'): os.mkdir('_output_logs') sys.stdout = open(os.path.join('_output_logs', g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) if monitorer.get_status(exp_batch, exp_alias + '.yaml', g_conf.PROCESS_NAME)[0] == "Finished": return full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"], g_conf.TRAIN_DATASET_NAME) dataset = CoILDataset(full_dataset, transform=transforms.Compose([transforms.ToPILImage(), transforms.Resize(128, 128), transforms.ToTensor(), transforms.Normalize([ 0.5, 0.5, 0.5], [ 1.0, 1.0, 1.0])])) sampler = BatchSequenceSampler(splitter.control_steer_split(dataset.measurements, dataset.meta_data), g_conf.BATCH_SIZE, g_conf.NUMBER_IMAGES_SEQUENCE, g_conf.SEQUENCE_STRIDE) data_loader = torch.utils.data.DataLoader(dataset, batch_sampler=sampler, shuffle=False, num_workers=6, pin_memory=True) transform = transforms.Compose([transforms.Resize((88, 200))]) l1weight = 1.0 image_size = tuple([88, 200]) testmode = 1 # print("helllooooo", g_conf.MODEL_NAME) if g_conf.GANMODEL_NAME == 'LSDcontrol': netD = ganmodels._netD().cuda() netG = ganmodels._netG(skip=g_conf.SKIP).cuda() # else: # netD = ganmodels._oldnetD().cuda() # netG = ganmodels._oldnetG().cuda() init_weights(netD) init_weights(netG) print(netD) print(netG) optimD = torch.optim.Adam(netD.parameters(), lr=0.0002, betas=(0.5, 0.999)) optimG = torch.optim.Adam(netG.parameters(), lr=0.0002, betas=(0.5, 0.999)) MSE_loss = torch.nn.MSELoss().cuda() L1_loss = torch.nn.L1Loss().cuda() iteration = 0 best_loss_iter = 0 best_lossD = 1000000.0 best_lossG = 1000000.0 accumulated_time = 0 netG.eval() netD.eval() capture_time = time.time() for data in data_loader: input_data, float_data = data inputs = input_data['rgb'].cuda() inputs = inputs.squeeze(1) print ("Inputs", i) #forward pass fake_inputs = netG(inputs) if iteration % 1000 == 0: coil_logger.add_image("Images", torch.cat((inputs[:3], fake_inputs[:3]), 0), iteration) ##--------------------Discriminator part!!!!!!!!!!----------------------- set_requires_grad(netD, True) optimD.zero_grad() ##fake outputsD_fake_forD = netD(fake_inputs.detach()) labsize = outputsD_fake_forD.size() #Create labels of patchgan style with label smoothing labels_fake = torch.zeros(labsize[0], labsize[1], labsize[2], labsize[3]) #Fake labels label_fake_noise = torch.rand(labels_fake.size()) * 0.5 - 0.25 #Label smoothing labels_fake = labels_fake + label_fake_noise labels_fake = Variable(labels_fake).cuda() lossD_fake = MSE_loss(outputsD_fake_forD, labels_fake) ##real outputsD_real = netD(inputs) labsize = outputsD_real.size() #Create labels of patchgan style with label smoothing labels_real = torch.ones(labsize[0], labsize[1], labsize[2], labsize[3]) #Real labels label_real_noise = torch.rand(labels_real.size()) * 0.5 - 0.25 #Label smoothing labels_real = labels_real + label_real_noise labels_real = Variable(labels_real).cuda() lossD_real = MSE_loss(outputsD_real, labels_real) #Discriminator updates lossD = (lossD_real + lossD_fake) * 0.5 lossD /= len(inputs) lossD.backward() #retain_graph=True needed? optimD.step() coil_logger.add_scalar('Total LossD', lossD.data, iteration) coil_logger.add_scalar('Real LossD', lossD_real.data / len(inputs), iteration) coil_logger.add_scalar('Fake LossD', lossD_fake.data / len(inputs), iteration) ##--------------------Generator part!!!!!!!!!!----------------------- #TODO change decoder architecture #TODO check norms of gradients later #TODO add auxiliary regression loss for steering set_requires_grad(netD, False) optimG.zero_grad() outputsD_fake_forG = netD(fake_inputs) #Generator updates lossG_adv = MSE_loss(outputsD_fake_forG, labels_real) lossG_smooth = L1_loss(fake_inputs, inputs) lossG = lossG_adv + l1weight * lossG_smooth lossG /= len(inputs) lossG.backward() #retain_graph=True needed? optimG.step() coil_logger.add_scalar('Total LossG', lossG.data, iteration) coil_logger.add_scalar('Adv LossG', lossG_adv.data / len(inputs), iteration) coil_logger.add_scalar('Smooth LossG', lossG_smooth.data / len(inputs), iteration) #optimization for one iter done! position = random.randint(0, len(float_data)-1) if lossD.data < best_lossD: best_lossD = lossD.data.tolist() if lossG.data < best_lossG: best_lossG = lossG.data.tolist() best_loss_iter = iteration accumulated_time += time.time() - capture_time capture_time = time.time() print("LossD", lossD.data.tolist(), "LossG", lossG.data.tolist(), "BestLossD", best_lossD, "BestLossG", best_lossG, "Iteration", iteration, "Best Loss Iteration", best_loss_iter) coil_logger.add_message('Iterating', {'Iteration': iteration, 'LossD': lossD.data.tolist(), 'LossG': lossG.data.tolist(), 'Images/s': (iteration*g_conf.BATCH_SIZE)/accumulated_time, 'BestLossD': best_lossD, 'BestLossIteration': best_loss_iter, 'BestLossG': best_lossG, 'BestLossIteration': best_loss_iter, 'GroundTruth': dataset.extract_targets(float_data)[position].data.tolist(), 'Inputs': dataset.extract_inputs(float_data)[position].data.tolist()}, iteration) if is_ready_to_save(iteration): state = { 'iteration': iteration, 'stateD_dict': netD.state_dict(), 'stateG_dict': netG.state_dict(), 'best_lossD': best_lossD, 'best_lossG': best_lossG, 'total_time': accumulated_time, 'best_loss_iter': best_loss_iter } torch.save(state, os.path.join('/datatmp/Experiments/rohitgan/_logs', exp_batch, exp_alias , 'checkpoints', str(iteration) + '.pth')) if iteration == best_loss_iter: state = { 'iteration': iteration, 'stateD_dict': netD.state_dict(), 'stateG_dict': netG.state_dict(), 'best_lossD': best_lossD, 'best_lossG': best_lossG, 'total_time': accumulated_time, 'best_loss_iter': best_loss_iter } torch.save(state, os.path.join('/datatmp/Experiments/rohitgan/_logs', exp_batch, exp_alias , 'best_modelG' + '.pth')) iteration += 1
def execute(gpu, exp_batch, exp_alias): from time import gmtime, strftime manualSeed = g_conf.SEED torch.cuda.manual_seed(manualSeed) os.environ["CUDA_VISIBLE_DEVICES"] = gpu merge_with_yaml(os.path.join('configs', exp_batch, exp_alias + '.yaml')) set_type_of_process('train') coil_logger.add_message('Loading', {'GPU': gpu}) if not os.path.exists('_output_logs'): os.mkdir('_output_logs') sys.stdout = open(os.path.join( '_output_logs', g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) if monitorer.get_status(exp_batch, exp_alias + '.yaml', g_conf.PROCESS_NAME)[0] == "Finished": return full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"], g_conf.TRAIN_DATASET_NAME) real_dataset = g_conf.TARGET_DOMAIN_PATH # real_dataset = os.path.join(os.environ["COIL_DATASET_PATH"], "FinalRealWorldDataset") #main data loader dataset = CoILDataset(full_dataset, transform=transforms.Compose([transforms.ToTensor() ])) sampler = BatchSequenceSampler( splitter.control_steer_split(dataset.measurements, dataset.meta_data), g_conf.BATCH_SIZE, g_conf.NUMBER_IMAGES_SEQUENCE, g_conf.SEQUENCE_STRIDE) data_loader = torch.utils.data.DataLoader(dataset, batch_sampler=sampler, shuffle=False, num_workers=6, pin_memory=True) real_dl = real_dataloader.RealDataset(real_dataset, g_conf.BATCH_SIZE) st = lambda aug: iag.Sometimes(aug, 0.4) oc = lambda aug: iag.Sometimes(aug, 0.3) rl = lambda aug: iag.Sometimes(aug, 0.09) augmenter = iag.Augmenter([iag.ToGPU()] + [ rl(iag.GaussianBlur( (0, 1.5))), # blur images with a sigma between 0 and 1.5 rl(iag.AdditiveGaussianNoise(loc=0, scale=( 0.0, 0.05), per_channel=0.5)), # add gaussian noise to images oc(iag.Dropout((0.0, 0.10), per_channel=0.5) ), # randomly remove up to X% of the pixels oc( iag.CoarseDropout( (0.0, 0.10), size_percent=(0.08, 0.2), per_channel=0.5)), # randomly remove up to X% of the pixels oc(iag.Add((-40, 40), per_channel=0.5) ), # change brightness of images (by -X to Y of original value) st(iag.Multiply((0.10, 2), per_channel=0.2) ), # change brightness of images (X-Y% of original value) rl(iag.ContrastNormalization( (0.5, 1.5), per_channel=0.5)), # improve or worsen the contrast rl(iag.Grayscale((0.0, 1))), # put grayscale ] # do all of the above in random order ) l1weight = g_conf.L1_WEIGHT task_adv_weight = g_conf.TASK_ADV_WEIGHT image_size = tuple([88, 200]) print(strftime("%Y-%m-%d %H:%M:%S", gmtime())) print("Configurations of ", exp_alias) print("GANMODEL_NAME", g_conf.GANMODEL_NAME) print("LOSS_FUNCTION", g_conf.LOSS_FUNCTION) print("LR_G, LR_D, LR", g_conf.LR_G, g_conf.LR_D, g_conf.LEARNING_RATE) print("SKIP", g_conf.SKIP) print("TYPE", g_conf.TYPE) print("L1 WEIGHT", g_conf.L1_WEIGHT) print("TASK ADV WEIGHT", g_conf.TASK_ADV_WEIGHT) print("LAB SMOOTH", g_conf.LABSMOOTH) if g_conf.GANMODEL_NAME == 'LSDcontrol': netD = ganmodels._netD(loss=g_conf.LOSS_FUNCTION).cuda() netG = ganmodels._netG(loss=g_conf.LOSS_FUNCTION, skip=g_conf.SKIP).cuda() elif g_conf.GANMODEL_NAME == 'LSDcontrol_nopatch': netD = ganmodels_nopatch._netD(loss=g_conf.LOSS_FUNCTION).cuda() netG = ganmodels_nopatch._netG(loss=g_conf.LOSS_FUNCTION).cuda() elif g_conf.GANMODEL_NAME == 'LSDcontrol_nopatch_smaller': netD = ganmodels_nopatch_smaller._netD( loss=g_conf.LOSS_FUNCTION).cuda() netG = ganmodels_nopatch_smaller._netG( loss=g_conf.LOSS_FUNCTION).cuda() elif g_conf.GANMODEL_NAME == 'LSDcontrol_task': netD = ganmodels_task._netD(loss=g_conf.LOSS_FUNCTION).cuda() netG = ganmodels_task._netG(loss=g_conf.LOSS_FUNCTION).cuda() netF = ganmodels_task._netF(loss=g_conf.LOSS_FUNCTION).cuda() if g_conf.PRETRAINED == 'RECON': netF_statedict = torch.load('netF_GAN_Pretrained.wts') netF.load_state_dict(netF_statedict) elif g_conf.PRETRAINED == 'IL': print("Loading IL") model_IL = torch.load('best_loss_20-06_EpicClearWeather.pth') model_IL_state_dict = model_IL['state_dict'] netF_state_dict = netF.state_dict() print(len(netF_state_dict.keys()), len(model_IL_state_dict.keys())) for i, keys in enumerate( zip(netF_state_dict.keys(), model_IL_state_dict.keys())): newkey, oldkey = keys # if newkey.split('.')[0] == "branch" and oldkey.split('.')[0] == "branches": # print("No Transfer of ", newkey, " to ", oldkey) # else: print("Transferring ", newkey, " to ", oldkey) netF_state_dict[newkey] = model_IL_state_dict[oldkey] netF.load_state_dict(netF_state_dict) print("IL Model Loaded!") elif g_conf.GANMODEL_NAME == 'LSDcontrol_task_2d': netD = ganmodels_taskAC_shared._netD().cuda() netG = ganmodels_taskAC_shared._netG().cuda() netF = ganmodels_taskAC_shared._netF().cuda() if g_conf.PRETRAINED == 'IL': print("Loading IL") model_IL = torch.load(g_conf.IL_AGENT_PATH) model_IL_state_dict = model_IL['state_dict'] netF_state_dict = netF.state_dict() print(len(netF_state_dict.keys()), len(model_IL_state_dict.keys())) for i, keys in enumerate( zip(netF_state_dict.keys(), model_IL_state_dict.keys())): newkey, oldkey = keys print("Transferring ", newkey, " to ", oldkey) netF_state_dict[newkey] = model_IL_state_dict[oldkey] netF.load_state_dict(netF_state_dict) print("IL Model Loaded!") ##### if g_conf.IF_AUG: print("Loading Aug Decoder") model_dec = torch.load(g_conf.DECODER_RECON_PATH) else: print("Loading Decoder") model_dec = torch.load(g_conf.DECODER_RECON_PATH) model_dec_state_dict = model_dec['stateG_dict'] netG_state_dict = netG.state_dict() print(len(netG_state_dict.keys()), len(model_dec_state_dict.keys())) for i, keys in enumerate( zip(netG_state_dict.keys(), model_dec_state_dict.keys())): newkey, oldkey = keys print("Transferring ", newkey, " to ", oldkey) netG_state_dict[newkey] = model_dec_state_dict[oldkey] netG.load_state_dict(netG_state_dict) print("Decoder Model Loaded!") init_weights(netD) print(netD) print(netF) print(netG) optimD = torch.optim.Adam(netD.parameters(), lr=g_conf.LR_D, betas=(0.5, 0.999)) optimG = torch.optim.Adam(netG.parameters(), lr=g_conf.LR_G, betas=(0.5, 0.999)) if g_conf.TYPE == 'task': optimF = torch.optim.Adam(netF.parameters(), lr=g_conf.LEARNING_RATE) Task_Loss = TaskLoss() if g_conf.GANMODEL_NAME == 'LSDcontrol_task_2d': print("Using cross entropy!") Loss = torch.nn.CrossEntropyLoss().cuda() L1_loss = torch.nn.L1Loss().cuda() iteration = 0 best_loss_iter_F = 0 best_loss_iter_G = 0 best_lossF = 1000000.0 best_lossD = 1000000.0 best_lossG = 1000000.0 accumulated_time = 0 n_critic = g_conf.N_CRITIC lossF = Variable(torch.Tensor([100.0])) lossG_adv = Variable(torch.Tensor([100.0])) lossG_smooth = Variable(torch.Tensor([100.0])) lossG = Variable(torch.Tensor([100.0])) netG.train() netD.train() netF.train() capture_time = time.time() if not os.path.exists('./imgs_' + exp_alias): os.mkdir('./imgs_' + exp_alias) fake_img_pool_src = ImagePool(50) fake_img_pool_tgt = ImagePool(50) for data in data_loader: set_requires_grad(netD, True) set_requires_grad(netF, True) set_requires_grad(netG, True) input_data, float_data = data tgt_imgs = real_dl.get_imgs() if g_conf.IF_AUG: inputs = augmenter(0, input_data['rgb']) else: inputs = input_data['rgb'].cuda() tgt_imgs = tgt_imgs.cuda() inputs = inputs.squeeze(1) inputs = inputs tgt_imgs = tgt_imgs controls = float_data[:, dataset.controls_position(), :] camera_angle = float_data[:, 26, :] camera_angle = camera_angle.cuda() steer = float_data[:, 0, :] steer = steer.cuda() speed = float_data[:, 10, :] speed = speed.cuda() time_use = 1.0 car_length = 3.0 extra_factor = 2.5 threshold = 1.0 pos = camera_angle > 0.0 pos = pos.type(torch.FloatTensor) neg = camera_angle <= 0.0 neg = neg.type(torch.FloatTensor) pos = pos.cuda() neg = neg.cuda() rad_camera_angle = math.pi * (torch.abs(camera_angle)) / 180.0 val = extra_factor * (torch.atan((rad_camera_angle * car_length) / (time_use * speed + 0.05))) / 3.1415 steer -= pos * torch.min(val, torch.Tensor([0.6]).cuda()) steer += neg * torch.min(val, torch.Tensor([0.6]).cuda()) steer = steer.cpu() float_data[:, 0, :] = steer float_data[:, 0, :][float_data[:, 0, :] > 1.0] = 1.0 float_data[:, 0, :][float_data[:, 0, :] < -1.0] = -1.0 src_embed_inputs, src_branches = netF( inputs, dataset.extract_inputs(float_data).cuda()) tgt_embed_inputs = netF(tgt_imgs, None) src_fake_inputs = netG(src_embed_inputs.detach()) tgt_fake_inputs = netG(tgt_embed_inputs.detach()) if iteration % 100 == 0: imgs_to_save = torch.cat((inputs[:1], src_fake_inputs[:1], tgt_imgs[:1], tgt_fake_inputs[:1]), 0).cpu().data coil_logger.add_image("Images", imgs_to_save, iteration) imgs_to_save = imgs_to_save.clamp(0.0, 1.0) vutils.save_image(imgs_to_save, './imgs_' + exp_alias + '/' + str(iteration) + '_real_and_fake.png', normalize=False) ##--------------------Discriminator part!!!!!!!!!!-------------------## ##source fake if g_conf.IF_POOL: src_fake_inputs_forD = fake_img_pool_src.query(src_fake_inputs) tgt_fake_inputs_forD = fake_img_pool_tgt.query(tgt_fake_inputs) else: src_fake_inputs_forD = src_fake_inputs tgt_fake_inputs_forD = tgt_fake_inputs set_requires_grad(netD, True) set_requires_grad(netF, False) set_requires_grad(netG, False) optimD.zero_grad() outputsD_fake_src_bin, __ = netD(src_fake_inputs_forD.detach()) outputsD_fake_tgt_bin, __ = netD(tgt_fake_inputs_forD.detach()) outputsD_real_src_bin, __ = netD(inputs) outputsD_real_tgt_bin, __ = netD(tgt_imgs) gradient_penalty_src = calc_gradient_penalty(netD, inputs, src_fake_inputs_forD, "recon") lossD_bin_src = torch.mean( outputsD_fake_src_bin - outputsD_real_src_bin) + gradient_penalty_src gradient_penalty_tgt = calc_gradient_penalty(netD, tgt_imgs, tgt_fake_inputs_forD, "recon") lossD_bin_tgt = torch.mean( outputsD_fake_tgt_bin - outputsD_real_tgt_bin) + gradient_penalty_tgt lossD = (lossD_bin_src + lossD_bin_tgt) * 0.5 lossD.backward(retain_graph=True) optimD.step() coil_logger.add_scalar('Total LossD Bin', lossD.data, iteration) coil_logger.add_scalar('Src LossD Bin', lossD_bin_src.data, iteration) coil_logger.add_scalar('Tgt LossD Bin', lossD_bin_tgt.data, iteration) ##--------------------Generator part!!!!!!!!!!-----------------------## set_requires_grad(netD, False) set_requires_grad(netF, False) set_requires_grad(netG, True) optimG.zero_grad() #fake outputs for bin outputsD_bin_src_fake_forG, __ = netD(src_fake_inputs) outputsD_bin_tgt_fake_forG, __ = netD(tgt_fake_inputs) #Generator updates if ((iteration + 1) % n_critic) == 0: #for netD_bin optimG.zero_grad() outputsD_bin_fake_forG = netD(tgt_imgs) #Generator updates lossG_src_smooth = L1_loss( src_fake_inputs, inputs) # L1 loss with real domain image lossG_tgt_smooth = L1_loss( tgt_fake_inputs, tgt_imgs) # L1 loss with real domain image lossG_src_adv_bin = -1.0 * torch.mean(outputsD_bin_src_fake_forG) lossG_tgt_adv_bin = -1.0 * torch.mean(outputsD_bin_tgt_fake_forG) lossG_adv_bin = 0.5 * (lossG_src_adv_bin + lossG_tgt_adv_bin) lossG_Adv = lossG_adv_bin lossG_L1 = 0.5 * (lossG_src_smooth + lossG_tgt_smooth) lossG = (lossG_Adv + l1weight * lossG_L1) / (1.0 + l1weight) lossG.backward(retain_graph=True) optimG.step() coil_logger.add_scalar('Total LossG', lossG.data, iteration) coil_logger.add_scalar('LossG Adv', lossG_Adv.data, iteration) coil_logger.add_scalar('Adv Bin LossG', lossG_adv_bin.data, iteration) coil_logger.add_scalar('Smooth LossG', lossG_L1.data, iteration) #####Task network updates########################## set_requires_grad(netD, False) set_requires_grad(netF, True) set_requires_grad(netG, False) optimF.zero_grad() lossF_task = Task_Loss.MSELoss( src_branches, dataset.extract_targets(float_data).cuda(), controls.cuda(), dataset.extract_inputs(float_data).cuda()) __, outputsD_fake_src_da = netD(src_fake_inputs_forD.detach()) __, outputsD_real_tgt_da = netD(tgt_imgs) __, outputsD_fake_tgt_da = netD(tgt_fake_inputs_forD.detach()) __, outputsD_real_src_da = netD(inputs) gradient_penalty_da_1 = calc_gradient_penalty( netD, tgt_imgs, src_fake_inputs_forD, "da") lossF_da_1 = torch.mean(outputsD_fake_src_da - outputsD_real_tgt_da ) + gradient_penalty_da_1 gradient_penalty_da_2 = calc_gradient_penalty( netD, inputs, tgt_fake_inputs_forD, "da") lossF_da_2 = torch.mean(outputsD_fake_tgt_da - outputsD_real_src_da ) + gradient_penalty_da_2 lossF_da = 0.5 * (lossF_da_1 + lossF_da_2) lossF = (lossF_task + task_adv_weight * lossF_da) / (1.0 + task_adv_weight) coil_logger.add_scalar('Total Task Loss', lossF.data, iteration) coil_logger.add_scalar('Adv Task Loss', lossF_da.data, iteration) coil_logger.add_scalar('Only Task Loss', lossF_task.data, iteration) lossF.backward(retain_graph=True) optimF.step() if lossG.data < best_lossG: best_lossG = lossG.data.tolist() best_loss_iter_G = iteration if lossF.data < best_lossF: best_lossF = lossF.data.tolist() best_loss_iter_F = iteration #optimization for one iter done! position = random.randint(0, len(float_data) - 1) if lossD.data < best_lossD: best_lossD = lossD.data.tolist() accumulated_time += time.time() - capture_time capture_time = time.time() if is_ready_to_save(iteration): state = { 'iteration': iteration, 'stateD_dict': netD.state_dict(), 'stateG_dict': netG.state_dict(), 'stateF_dict': netF.state_dict(), 'best_lossD': best_lossD, 'best_lossG': best_lossG, 'total_time': accumulated_time, 'best_loss_iter_G': best_loss_iter_G, 'best_loss_iter_F': best_loss_iter_F } torch.save( state, os.path.join('/datatmp/Datasets/rohitgan/_logs', exp_batch, exp_alias, 'checkpoints', str(iteration) + '.pth')) if iteration == best_loss_iter_F and iteration > 10000: state = { 'iteration': iteration, 'stateD_dict': netD.state_dict(), 'stateG_dict': netG.state_dict(), 'stateF_dict': netF.state_dict(), 'best_lossD': best_lossD, 'best_lossG': best_lossG, 'best_lossF': best_lossF, 'total_time': accumulated_time, 'best_loss_iter_F': best_loss_iter_F } torch.save( state, os.path.join('/datatmp/Datasets/rohitgan/_logs', exp_batch, exp_alias, 'best_modelF' + '.pth')) iteration += 1
model.eval() print(len(dataset)) save_dir = os.path.join(args.gradcam_path, args.type) if not os.path.isdir(save_dir): os.mkdir(save_dir) count = 0 for data in dataloader: for i in range(g_conf.BATCH_SIZE): controls = data['directions'] output = model.forward_branch( torch.squeeze(data['rgb']).cuda(), dataset.extract_inputs(data).cuda(), controls) activations = model.get_perception_activations( torch.squeeze(data['rgb']).cuda())[4].detach() # gradcam results in the suppmat are computed using brake output[i, 2].backward( ) # backprop from the steer (0), throttle (1) or brake (2) gradients = model.get_perception_gradients() pooled_gradients = torch.mean(torch.mean(torch.mean(gradients, 3), 2), 0) for j in range( 512): # number of feature maps = 512 for conv4, 256 for conv3 activations[:, j, :, :] *= pooled_gradients[j] heatmap = torch.mean(activations, dim=1).squeeze() heatmap = np.maximum(heatmap, 0)
def execute(gpu, exp_batch, exp_alias, suppress_output=True, number_of_workers=12): """ The main training function. This functions loads the latest checkpoint for a given, exp_batch (folder) and exp_alias (experiment configuration). With this checkpoint it starts from the beginning or continue some training. Args: gpu: The GPU number exp_batch: the folder with the experiments exp_alias: the alias, experiment name suppress_output: if the output are going to be saved on a file number_of_workers: the number of threads used for data loading Returns: None """ try: # We set the visible cuda devices to select the GPU os.environ["CUDA_VISIBLE_DEVICES"] = gpu g_conf.VARIABLE_WEIGHT = {} # At this point the log file with the correct naming is created. # You merge the yaml file with the global configuration structure. merge_with_yaml(os.path.join('configs', exp_batch, exp_alias + '.yaml')) set_type_of_process('train') # Set the process into loading status. coil_logger.add_message('Loading', {'GPU': gpu}) # Put the output to a separate file if it is the case if suppress_output: if not os.path.exists('_output_logs'): os.mkdir('_output_logs') sys.stdout = open(os.path.join('_output_logs', exp_alias + '_' + g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) sys.stderr = open(os.path.join('_output_logs', exp_alias + '_err_'+g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) if coil_logger.check_finish('train'): coil_logger.add_message('Finished', {}) return # Preload option if g_conf.PRELOAD_MODEL_ALIAS is not None: checkpoint = torch.load(os.path.join('_logs', g_conf.PRELOAD_MODEL_BATCH, g_conf.PRELOAD_MODEL_ALIAS, 'checkpoints', str(g_conf.PRELOAD_MODEL_CHECKPOINT)+'.pth')) # Get the latest checkpoint to be loaded # returns none if there are no checkpoints saved for this model checkpoint_file = get_latest_saved_checkpoint() if checkpoint_file is not None: checkpoint = torch.load(os.path.join('_logs', exp_batch, exp_alias, 'checkpoints', str(get_latest_saved_checkpoint()))) iteration = checkpoint['iteration'] best_loss = checkpoint['best_loss'] best_loss_iter = checkpoint['best_loss_iter'] else: iteration = 0 best_loss = 10000.0 best_loss_iter = 0 # Define the dataset. This structure is has the __get_item__ redefined in a way # that you can access the positions from the root directory as a in a vector. full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"], g_conf.TRAIN_DATASET_NAME) # By instantiating the augmenter we get a callable that augment images and transform them # into tensors. augmenter = Augmenter(g_conf.AUGMENTATION) # Instantiate the class used to read a dataset. The coil dataset generator # can be found dataset = CoILDataset(full_dataset, transform=augmenter, preload_name=str(g_conf.NUMBER_OF_HOURS) + 'hours_' + g_conf.TRAIN_DATASET_NAME) print ("Loaded dataset") data_loader = select_balancing_strategy(dataset, iteration, number_of_workers) model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION) model.cuda() optimizer = optim.Adam(model.parameters(), lr=g_conf.LEARNING_RATE) # Set ERFnet for segmentation model_erf = ERFNet(20) model_erf = torch.nn.DataParallel(model_erf) model_erf = model_erf.cuda() print("LOAD ERFNet") def load_my_state_dict(model, state_dict): #custom function to load model when not all dict elements own_state = model.state_dict() for name, param in state_dict.items(): if name not in own_state: continue own_state[name].copy_(param) return model model_erf = load_my_state_dict(model_erf, torch.load(os.path.join('trained_models/erfnet_pretrained.pth'))) model_erf.eval() print ("ERFNet and weights LOADED successfully") if checkpoint_file is not None or g_conf.PRELOAD_MODEL_ALIAS is not None: model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) accumulated_time = checkpoint['total_time'] loss_window = coil_logger.recover_loss_window('train', iteration) else: # We accumulate iteration time and keep the average speed accumulated_time = 0 loss_window = [] print ("Before the loss") criterion = Loss(g_conf.LOSS_FUNCTION) # Loss time series window for data in data_loader: # Basically in this mode of execution, we validate every X Steps, if it goes up 3 times, # add a stop on the _logs folder that is going to be read by this process if g_conf.FINISH_ON_VALIDATION_STALE is not None and \ check_loss_validation_stopped(iteration, g_conf.FINISH_ON_VALIDATION_STALE): break """ #################################### Main optimization loop #################################### """ iteration += 1 if iteration % 1000 == 0: adjust_learning_rate_auto(optimizer, loss_window) # get the control commands from float_data, size = [120,1] capture_time = time.time() controls = data['directions'] # The output(branches) is a list of 5 branches results, each branch is with size [120,3] model.zero_grad() # print("Segmentation") # use ERFNet to convert RGB to Segmentation rgbs = data['rgb'] filenames = data['rgb_name'] # # seg one by one # seg_road = [] # seg_not_road = [] # i = 0 # for inputs in rgbs: # inputs = inputs.unsqueeze(0) # # print("inputs ",inputs.shape) # with torch.no_grad(): # outputs = model_erf(inputs) # label = outputs[0].max(0)[1].byte().cpu().data # road = (label == 0) # not_road = (label != 0) # seg_road.append(road) # seg_not_road.append(not_road) # # # print("label ",label.shape) # # label_color = Colorize()(label.unsqueeze(0)) # # filename = filenames[i] # # filenameSave = "./save_color/" + filename.split("CoILTrain/")[1] # # os.makedirs(os.path.dirname(filenameSave), exist_ok=True) # # label_save = ToPILImage()(label_color) # # label_save.save(filenameSave) # # # print (i, filenameSave) # # i += 1 # seg_road = torch.stack(seg_road) # seg_not_road = torch.stack(seg_not_road) # seg = torch.stack([seg_road,seg_not_road]).transpose(0,1).float() # # print(seg.shape) # seg batch with torch.no_grad(): outputs = model_erf(rgbs) # print("outputs.shape ",outputs.shape) labels = outputs.max(1)[1].byte().cpu().data # print("labels.shape",labels.shape) # print(np.unique(labels[0])) seg_road = (labels==0) seg_not_road = (labels!=0) seg = torch.stack((seg_road,seg_not_road),1).float() # save 1st batch's segmentation results if iteration == 1: for i in range(120): label = seg[i,0,:,:] label_color = Colorize()(label.unsqueeze(0)) filenameSave = "./save_color/batch_road_mask/%d.png"%(i) os.makedirs(os.path.dirname(filenameSave), exist_ok=True) label_save = ToPILImage()(label_color) label_save.save(filenameSave) label = labels[i,:,:] label_color = Colorize()(label.unsqueeze(0)) filenameSave = "./save_color/batch_road/%d.png"%(i) os.makedirs(os.path.dirname(filenameSave), exist_ok=True) label_save = ToPILImage()(label_color) label_save.save(filenameSave) branches = model(torch.squeeze(seg).cuda(), dataset.extract_inputs(data).cuda()) # branches = model(torch.squeeze(rgbs.cuda()), # dataset.extract_input(data).cuda()) loss_function_params = { 'branches': branches, 'targets': dataset.extract_targets(data).cuda(), 'controls': controls.cuda(), 'inputs': dataset.extract_inputs(data).cuda(), 'branch_weights': g_conf.BRANCH_LOSS_WEIGHT, 'variable_weights': g_conf.VARIABLE_WEIGHT } loss, _ = criterion(loss_function_params) loss.backward() optimizer.step() """ #################################### Saving the model if necessary #################################### """ if is_ready_to_save(iteration): state = { 'iteration': iteration, 'state_dict': model.state_dict(), 'best_loss': best_loss, 'total_time': accumulated_time, 'optimizer': optimizer.state_dict(), 'best_loss_iter': best_loss_iter } torch.save(state, os.path.join('_logs', exp_batch, exp_alias , 'checkpoints', str(iteration) + '.pth')) """ ################################################ Adding tensorboard logs. Making calculations for logging purposes. These logs are monitored by the printer module. ################################################# """ coil_logger.add_scalar('Loss', loss.data, iteration) coil_logger.add_image('Image', torch.squeeze(data['rgb']), iteration) if loss.data < best_loss: best_loss = loss.data.tolist() best_loss_iter = iteration # Log a random position position = random.randint(0, len(data) - 1) output = model.extract_branch(torch.stack(branches[0:4]), controls) error = torch.abs(output - dataset.extract_targets(data).cuda()) accumulated_time += time.time() - capture_time coil_logger.add_message('Iterating', {'Iteration': iteration, 'Loss': loss.data.tolist(), 'Images/s': (iteration * g_conf.BATCH_SIZE) / accumulated_time, 'BestLoss': best_loss, 'BestLossIteration': best_loss_iter, 'Output': output[position].data.tolist(), 'GroundTruth': dataset.extract_targets(data)[ position].data.tolist(), 'Error': error[position].data.tolist(), 'Inputs': dataset.extract_inputs(data)[ position].data.tolist()}, iteration) loss_window.append(loss.data.tolist()) coil_logger.write_on_error_csv('train', loss.data) print("Iteration: %d Loss: %f" % (iteration, loss.data)) coil_logger.add_message('Finished', {}) except KeyboardInterrupt: coil_logger.add_message('Error', {'Message': 'Killed By User'}) except RuntimeError as e: coil_logger.add_message('Error', {'Message': str(e)}) except: traceback.print_exc() coil_logger.add_message('Error', {'Message': 'Something Happened'})
def execute(gpu, exp_batch, exp_alias, dataset_name, suppress_output): latest = None try: # We set the visible cuda devices os.environ["CUDA_VISIBLE_DEVICES"] = gpu # At this point the log file with the correct naming is created. merge_with_yaml(os.path.join('configs', exp_batch, exp_alias + '.yaml')) # The validation dataset is always fully loaded, so we fix a very high number of hours g_conf.NUMBER_OF_HOURS = 10000 set_type_of_process('validation', dataset_name) if not os.path.exists('_output_logs'): os.mkdir('_output_logs') if suppress_output: sys.stdout = open(os.path.join( '_output_logs', exp_alias + '_' + g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) sys.stderr = open(os.path.join( '_output_logs', exp_alias + '_err_' + g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) # Define the dataset. This structure is has the __get_item__ redefined in a way # that you can access the HDFILES positions from the root directory as a in a vector. full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"], dataset_name) augmenter = Augmenter(None) # Definition of the dataset to be used. Preload name is just the validation data name dataset = CoILDataset(full_dataset, transform=augmenter, preload_name=dataset_name) # Creates the sampler, this part is responsible for managing the keys. It divides # all keys depending on the measurements and produces a set of keys for each bach. # The data loader is the multi threaded module from pytorch that release a number of # workers to get all the data. data_loader = torch.utils.data.DataLoader( dataset, batch_size=g_conf.BATCH_SIZE, shuffle=False, num_workers=g_conf.NUMBER_OF_LOADING_WORKERS, pin_memory=True) model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION) # Set ERFnet for segmentation model_erf = ERFNet(20) model_erf = torch.nn.DataParallel(model_erf) model_erf = model_erf.cuda() print("LOAD ERFNet - validate") def load_my_state_dict( model, state_dict ): #custom function to load model when not all dict elements own_state = model.state_dict() for name, param in state_dict.items(): if name not in own_state: continue own_state[name].copy_(param) return model model_erf = load_my_state_dict( model_erf, torch.load(os.path.join('trained_models/erfnet_pretrained.pth'))) model_erf.eval() print("ERFNet and weights LOADED successfully") # The window used to keep track of the trainings l1_window = [] latest = get_latest_evaluated_checkpoint() if latest is not None: # When latest is noe l1_window = coil_logger.recover_loss_window(dataset_name, None) model.cuda() best_mse = 1000 best_error = 1000 best_mse_iter = 0 best_error_iter = 0 while not maximun_checkpoint_reach(latest, g_conf.TEST_SCHEDULE): if is_next_checkpoint_ready(g_conf.TEST_SCHEDULE): latest = get_next_checkpoint(g_conf.TEST_SCHEDULE) checkpoint = torch.load( os.path.join('_logs', exp_batch, exp_alias, 'checkpoints', str(latest) + '.pth')) checkpoint_iteration = checkpoint['iteration'] print("Validation loaded ", checkpoint_iteration) model.load_state_dict(checkpoint['state_dict']) model.eval() accumulated_mse = 0 accumulated_error = 0 iteration_on_checkpoint = 0 for data in data_loader: # Compute the forward pass on a batch from the validation dataset controls = data['directions'] # Seg batch rgbs = data['rgb'] with torch.no_grad(): outputs = model_erf(rgbs) labels = outputs.max(1)[1].byte().cpu().data seg_road = (labels == 0) seg_not_road = (labels != 0) seg = torch.stack((seg_road, seg_not_road), 1).float() output = model.forward_branch( torch.squeeze(seg).cuda(), dataset.extract_inputs(data).cuda(), controls) # output = model.foward_branch(torch.squeeze(rgbs).cuda(), # dataset.extract_inputs(data).cuda(),controls) # It could be either waypoints or direct control if 'waypoint1_angle' in g_conf.TARGETS: write_waypoints_output(checkpoint_iteration, output) else: write_regular_output(checkpoint_iteration, output) mse = torch.mean( (output - dataset.extract_targets(data).cuda() )**2).data.tolist() mean_error = torch.mean( torch.abs(output - dataset.extract_targets(data).cuda()) ).data.tolist() accumulated_error += mean_error accumulated_mse += mse error = torch.abs(output - dataset.extract_targets(data).cuda()) # Log a random position position = random.randint(0, len(output.data.tolist()) - 1) coil_logger.add_message( 'Iterating', { 'Checkpoint': latest, 'Iteration': (str(iteration_on_checkpoint * 120) + '/' + str(len(dataset))), 'MeanError': mean_error, 'MSE': mse, 'Output': output[position].data.tolist(), 'GroundTruth': dataset.extract_targets( data)[position].data.tolist(), 'Error': error[position].data.tolist(), 'Inputs': dataset.extract_inputs(data) [position].data.tolist() }, latest) iteration_on_checkpoint += 1 print("Iteration %d on Checkpoint %d : Error %f" % (iteration_on_checkpoint, checkpoint_iteration, mean_error)) """ ######## Finish a round of validation, write results, wait for the next ######## """ checkpoint_average_mse = accumulated_mse / (len(data_loader)) checkpoint_average_error = accumulated_error / ( len(data_loader)) coil_logger.add_scalar('Loss', checkpoint_average_mse, latest, True) coil_logger.add_scalar('Error', checkpoint_average_error, latest, True) if checkpoint_average_mse < best_mse: best_mse = checkpoint_average_mse best_mse_iter = latest if checkpoint_average_error < best_error: best_error = checkpoint_average_error best_error_iter = latest coil_logger.add_message( 'Iterating', { 'Summary': { 'Error': checkpoint_average_error, 'Loss': checkpoint_average_mse, 'BestError': best_error, 'BestMSE': best_mse, 'BestMSECheckpoint': best_mse_iter, 'BestErrorCheckpoint': best_error_iter }, 'Checkpoint': latest }, latest) l1_window.append(checkpoint_average_error) coil_logger.write_on_error_csv(dataset_name, checkpoint_average_error) # If we are using the finish when validation stops, we check the current if g_conf.FINISH_ON_VALIDATION_STALE is not None: if dlib.count_steps_without_decrease(l1_window) > 3 and \ dlib.count_steps_without_decrease_robust(l1_window) > 3: coil_logger.write_stop(dataset_name, latest) break else: latest = get_latest_evaluated_checkpoint() time.sleep(1) coil_logger.add_message('Loading', {'Message': 'Waiting Checkpoint'}) print("Waiting for the next Validation") coil_logger.add_message('Finished', {}) except KeyboardInterrupt: coil_logger.add_message('Error', {'Message': 'Killed By User'}) # We erase the output that was unfinished due to some process stop. if latest is not None: coil_logger.erase_csv(latest) except RuntimeError as e: if latest is not None: coil_logger.erase_csv(latest) coil_logger.add_message('Error', {'Message': str(e)}) except: traceback.print_exc() coil_logger.add_message('Error', {'Message': 'Something Happened'}) # We erase the output that was unfinished due to some process stop. if latest is not None: coil_logger.erase_csv(latest)
def execute(gpu, exp_batch, exp_alias, dataset_name, suppress_output=True, yaml_file=None): latest = None # try: # We set the visible cuda devices os.environ["CUDA_VISIBLE_DEVICES"] = gpu # At this point the log file with the correct naming is created. path_to_yaml_file = os.path.join('configs', exp_batch, exp_alias+'.yaml') if yaml_file is not None: path_to_yaml_file = os.path.join(yaml_file, exp_alias+'.yaml') merge_with_yaml(path_to_yaml_file) # The validation dataset is always fully loaded, so we fix a very high number of hours # g_conf.NUMBER_OF_HOURS = 10000 # removed to simplify code """ # check again if this segment is required or not set_type_of_process('validation', dataset_name) if not os.path.exists('_output_logs'): os.mkdir('_output_logs') if suppress_output: sys.stdout = open(os.path.join('_output_logs', exp_alias + '_' + g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) sys.stderr = open(os.path.join('_output_logs', exp_alias + '_err_' + g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) """ # Define the dataset. This structure is has the __get_item__ redefined in a way # that you can access the HDFILES positions from the root directory as a in a vector. dataset_name = dataset_name.split('_')[-1] # since preload file has '<X>hours_' as prefix whereas dataset folder does not full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"], dataset_name) # original code augmenter = Augmenter(None) print ('full dataset path: ', full_dataset) dataset = CoILDataset(full_dataset, transform=augmenter, preload_name=args.dataset_name) # The data loader is the multi threaded module from pytorch that release a number of # workers to get all the data. data_loader = torch.utils.data.DataLoader(dataset, batch_size=g_conf.BATCH_SIZE, shuffle=False, num_workers=g_conf.NUMBER_OF_LOADING_WORKERS, pin_memory=True) model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION) """ removing this segment to simplify code # The window used to keep track of the trainings l1_window = [] latest = get_latest_evaluated_checkpoint() if latest is not None: # When latest is noe l1_window = coil_logger.recover_loss_window(dataset_name, None) """ model.cuda() best_mse = 1000 best_error = 1000 best_mse_iter = 0 best_error_iter = 0 # modified validation code from here to run a single model checkpoint = torch.load(args.checkpoint) checkpoint_iteration = checkpoint['iteration'] print("model loaded ", checkpoint_iteration) model.load_state_dict(checkpoint['state_dict']) model.eval() accumulated_mse = 0 accumulated_error = 0 iteration_on_checkpoint = 0 print ('data_loader size: ', len(data_loader)) total_error = [] for data in data_loader: # Compute the forward pass on a batch from the loaded dataset controls = data['directions'] branches = model(torch.squeeze(data['rgb'].cuda()), dataset.extract_inputs(data).cuda()) output = model.extract_branch(torch.stack(branches[0:4]), controls) error = torch.abs(output - dataset.extract_targets(data).cuda()) total_error += error.detach().cpu().tolist() iteration_on_checkpoint += 1 if iteration_on_checkpoint % 50 == 0: print ('iteration: ', iteration_on_checkpoint) total_error = np.array(total_error) print (len(total_error), total_error.shape) np.save(os.path.join(args.save_path, args.dataset_name, 'computed_error.npy'), total_error) '''
def execute(gpu, exp_batch, exp_alias, suppress_output=True, number_of_workers=12, encoder_params=None): """ The main training function. This functions loads the latest checkpoint for a given, exp_batch (folder) and exp_alias (experiment configuration). With this checkpoint it starts from the beginning or continue some training. Args: gpu: The GPU number exp_batch: the folder with the experiments exp_alias: the alias, experiment name suppress_output: if the output are going to be saved on a file number_of_workers: the number of threads used for data loading Returns: None """ try: # We set the visible cuda devices to select the GPU os.environ["CUDA_VISIBLE_DEVICES"] = gpu g_conf.VARIABLE_WEIGHT = {} # At this point the log file with the correct naming is created. # You merge the yaml file with the global configuration structure. merge_with_yaml( os.path.join('configs', exp_batch, exp_alias + '.yaml'), encoder_params) set_type_of_process('train') # Set the process into loading status. coil_logger.add_message('Loading', {'GPU': os.environ["CUDA_VISIBLE_DEVICES"]}) seed_everything(seed=g_conf.MAGICAL_SEED) # Put the output to a separate file if it is the case if suppress_output: if not os.path.exists('_output_logs'): os.mkdir('_output_logs') sys.stdout = open(os.path.join( '_output_logs', exp_alias + '_' + g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) sys.stderr = open(os.path.join( '_output_logs', exp_alias + '_err_' + g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) if coil_logger.check_finish('train'): coil_logger.add_message('Finished', {}) return # Preload option print(" GOING TO LOAD") if g_conf.PRELOAD_MODEL_ALIAS is not None: print(" LOADING A PRELOAD") checkpoint = torch.load( os.path.join('_logs', g_conf.PRELOAD_MODEL_BATCH, g_conf.PRELOAD_MODEL_ALIAS, 'checkpoints', str(g_conf.PRELOAD_MODEL_CHECKPOINT) + '.pth')) else: # Get the latest checkpoint to be loaded # returns none if there are no checkpoints saved for this model checkpoint_file = get_latest_saved_checkpoint() if checkpoint_file is not None: print('loading previous checkpoint ', checkpoint_file) checkpoint = torch.load( os.path.join('_logs', g_conf.EXPERIMENT_BATCH_NAME, g_conf.EXPERIMENT_NAME, 'checkpoints', str(get_latest_saved_checkpoint()))) iteration = checkpoint['iteration'] best_loss = checkpoint['best_loss'] best_loss_iter = checkpoint['best_loss_iter'] else: iteration = 0 best_loss = 100000000.0 best_loss_iter = 0 # Define the dataset. This structure is has the __get_item__ redefined in a way # that you can access the positions from the root directory as a in a vector. #full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"], g_conf.TRAIN_DATASET_NAME) # By instantiating the augmenter we get a callable that augment images and transform them # into tensors. augmenter = Augmenter(g_conf.AUGMENTATION) # We can save preload dataset depends on the json file name, then no need to load dataset for each time with the same dataset if len(g_conf.EXPERIENCE_FILE) == 1: json_file_name = str( g_conf.EXPERIENCE_FILE[0]).split('/')[-1].split('.')[-2] else: json_file_name = str(g_conf.EXPERIENCE_FILE[0]).split( '/')[-1].split('.')[-2] + '_' + str( g_conf.EXPERIENCE_FILE[1]).split('/')[-1].split('.')[-2] dataset = CoILDataset(transform=augmenter, preload_name=g_conf.PROCESS_NAME + '_' + json_file_name + '_' + g_conf.DATA_USED) #dataset = CoILDataset(transform=augmenter, preload_name=str(g_conf.NUMBER_OF_HOURS)+ 'hours_' + g_conf.TRAIN_DATASET_NAME) print("Loaded Training dataset") data_loader = select_balancing_strategy(dataset, iteration, number_of_workers) if g_conf.MODEL_TYPE in ['separate-affordances']: model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION, g_conf.ENCODER_MODEL_CONFIGURATION) model.cuda() optimizer = optim.Adam(model.parameters(), lr=g_conf.LEARNING_RATE) print(model) # we use the pre-trained encoder model to extract bottleneck Z and train the E-t-E model if g_conf.MODEL_TYPE in ['separate-affordances']: encoder_model = EncoderModel(g_conf.ENCODER_MODEL_TYPE, g_conf.ENCODER_MODEL_CONFIGURATION) encoder_model.cuda() encoder_model.eval() # To freeze the pre-trained encoder model if g_conf.FREEZE_ENCODER: for param_ in encoder_model.parameters(): param_.requires_grad = False if encoder_params is not None: encoder_checkpoint = torch.load( os.path.join( '_logs', encoder_params['encoder_folder'], encoder_params['encoder_exp'], 'checkpoints', str(encoder_params['encoder_checkpoint']) + '.pth')) print( "Encoder model ", str(encoder_params['encoder_checkpoint']), "loaded from ", os.path.join('_logs', encoder_params['encoder_folder'], encoder_params['encoder_exp'], 'checkpoints')) encoder_model.load_state_dict(encoder_checkpoint['state_dict']) if g_conf.FREEZE_ENCODER: encoder_model.eval() # To freeze the pre-trained encoder model for param_ in encoder_model.parameters(): param_.requires_grad = False else: optimizer = optim.Adam(list(model.parameters()) + list(encoder_model.parameters()), lr=g_conf.LEARNING_RATE) for name_encoder, param_encoder in encoder_model.named_parameters( ): if param_encoder.requires_grad: print(' Unfrozen layers', name_encoder) else: print(' Frozen layers', name_encoder) if checkpoint_file is not None or g_conf.PRELOAD_MODEL_ALIAS is not None: model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) accumulated_time = checkpoint['total_time'] loss_window = coil_logger.recover_loss_window('train', iteration) else: # We accumulate iteration time and keep the average speed accumulated_time = 0 loss_window = [] for name, param in model.named_parameters(): if param.requires_grad: print(' Unfrozen layers', name) else: print(' Frozen layers', name) print("Before the loss") # Loss time series window for data in data_loader: # Basically in this mode of execution, we validate every X Steps, if it goes up 3 times, # add a stop on the _logs folder that is going to be read by this process if g_conf.FINISH_ON_VALIDATION_STALE is not None and \ check_loss_validation_stopped(iteration, g_conf.FINISH_ON_VALIDATION_STALE): break """ #################################### Main optimization loop #################################### """ if iteration % 1000 == 0: adjust_learning_rate_auto(optimizer, loss_window) model.zero_grad() if not g_conf.FREEZE_ENCODER: encoder_model.zero_grad() if g_conf.LABELS_SUPERVISED: inputs_data = torch.cat( (data['rgb'], torch.zeros(g_conf.BATCH_SIZE, 1, 88, 200)), dim=1).cuda() else: inputs_data = torch.squeeze(data['rgb'].cuda()) if g_conf.MODEL_TYPE in ['separate-affordances']: #TODO: for this two encoder models training, we haven't put speed as input to train yet if g_conf.ENCODER_MODEL_TYPE in [ 'action_prediction', 'stdim', 'forward', 'one-step-affordances' ]: e, inter = encoder_model.forward_encoder( inputs_data, dataset.extract_inputs(data).cuda(), # We also add measurements and commands torch.squeeze(dataset.extract_commands(data).cuda())) elif g_conf.ENCODER_MODEL_TYPE in ['ETE']: e, inter = encoder_model.forward_encoder( inputs_data, dataset.extract_inputs(data).cuda(), torch.squeeze(dataset.extract_commands(data).cuda())) loss_function_params = { 'classification_gt': dataset.extract_affordances_targets( data, 'classification').cuda(), # harzard stop, red_light.... 'class_weights': g_conf.AFFORDANCES_CLASS_WEIGHT, 'regression_gt': dataset.extract_affordances_targets(data, 'regression').cuda(), 'variable_weights': g_conf.AFFORDANCES_VARIABLE_WEIGHT } loss = model(e, loss_function_params) loss.backward() optimizer.step() else: raise RuntimeError( 'Not implement yet, this branch is only work for g_conf.MODEL_TYPE in [separate-affordances]' ) """ #################################### Saving the model if necessary #################################### """ if is_ready_to_save(iteration): state = { 'iteration': iteration, 'state_dict': model.state_dict(), 'best_loss': best_loss, 'total_time': accumulated_time, 'optimizer': optimizer.state_dict(), 'best_loss_iter': best_loss_iter } torch.save( state, os.path.join('_logs', g_conf.EXPERIMENT_BATCH_NAME, g_conf.EXPERIMENT_NAME, 'checkpoints', str(iteration) + '.pth')) if not g_conf.FREEZE_ENCODER: encoder_state = { 'iteration': iteration, 'state_dict': encoder_model.state_dict(), 'best_loss': best_loss, 'total_time': accumulated_time, 'optimizer': optimizer.state_dict(), 'best_loss_iter': best_loss_iter } torch.save( encoder_state, os.path.join('_logs', g_conf.EXPERIMENT_BATCH_NAME, g_conf.EXPERIMENT_NAME, 'checkpoints', str(iteration) + '_encoder.pth')) iteration += 1 """ ################################################ Adding tensorboard logs. Making calculations for logging purposes. These logs are monitored by the printer module. ################################################# """ coil_logger.add_scalar('Loss', loss.data, iteration) coil_logger.add_image('Image', torch.squeeze(data['rgb']), iteration) if loss.data < best_loss: best_loss = loss.data.tolist() best_loss_iter = iteration if iteration % 100 == 0: print('Train Iteration: {} [{}/{} ({:.0f}%)] \t Loss: {:.6f}'. format(iteration, iteration, g_conf.NUMBER_ITERATIONS, 100. * iteration / g_conf.NUMBER_ITERATIONS, loss.data)) coil_logger.add_message('Finished', {}) except KeyboardInterrupt: coil_logger.add_message('Error', {'Message': 'Killed By User'}) except RuntimeError as e: coil_logger.add_message('Error', {'Message': str(e)}) except: traceback.print_exc() coil_logger.add_message('Error', {'Message': 'Something Happened'})
def gather_data(): os.environ["CUDA_VISIBLE_DEVICES"] = '0' exp_batch = 'EXP' exp_alias = 'customized' number_of_workers = 12 encoder_params = {'encoder_checkpoint': 10000, 'encoder_folder': 'ENCODER', 'encoder_exp': 'customized'} try: merge_with_yaml(os.path.join('configs', exp_batch, exp_alias + '.yaml'), encoder_params) g_conf.PROCESS_NAME = 'analyze_embeddings' # We can save preload dataset depends on the json file name, then no need to load dataset for each time with the same dataset if len(g_conf.EXPERIENCE_FILE) == 1: json_file_name = str(g_conf.EXPERIENCE_FILE[0]).split('/')[-1].split('.')[-2] else: json_file_name = str(g_conf.EXPERIENCE_FILE[0]).split('/')[-1].split('.')[-2] + '_' + str(g_conf.EXPERIENCE_FILE[1]).split('/')[-1].split('.')[-2] dataset = CoILDataset(transform=None, preload_name=g_conf.PROCESS_NAME + '_' + json_file_name + '_' + g_conf.DATA_USED) data_loader = torch.utils.data.DataLoader(dataset, batch_size=g_conf.BATCH_SIZE, sampler=None, num_workers=12, pin_memory=True) print ("Loaded Training dataset") # we use the pre-trained encoder model to extract bottleneck Z and train the E-t-E model iteration = 0 if g_conf.MODEL_TYPE in ['separate-affordances']: encoder_model = EncoderModel(g_conf.ENCODER_MODEL_TYPE, g_conf.ENCODER_MODEL_CONFIGURATION) encoder_model.cuda() encoder_model.eval() # To freeze the pre-trained encoder model if g_conf.FREEZE_ENCODER: for param_ in encoder_model.parameters(): param_.requires_grad = False encoder_checkpoint = torch.load( os.path.join('_logs', encoder_params['encoder_folder'], encoder_params['encoder_exp'], 'checkpoints', str(encoder_params['encoder_checkpoint']) + '.pth')) print("Encoder model ", str(encoder_params['encoder_checkpoint']), "loaded from ", os.path.join('_logs', encoder_params['encoder_folder'], encoder_params['encoder_exp'], 'checkpoints')) encoder_model.load_state_dict(encoder_checkpoint['state_dict']) print('g_conf.ENCODER_MODEL_TYPE', g_conf.ENCODER_MODEL_TYPE) behaviors = [] route_folder = 'customized' route_files = os.listdir(route_folder) count = 0 kept_inds = [] total_length = 0 for route_file in sorted(route_files): print('-'*100, route_file) route_path = os.path.join(route_folder, route_file) if os.path.isdir(route_path): measurements_path = route_path + '/' + 'driving_log.csv' import pandas as pd df = pd.read_csv(measurements_path, delimiter=',') # remove cases which has ego_linear_speed < 0.1 or other_actor_linear_speed < 0 ego_fault = True events_path = route_path + '/' + 'events.txt' with open(events_path) as json_file: events = json.load(json_file) infractions = events['_checkpoint']['records'][0]['infractions'] import re infraction_types = ['collisions_layout', 'collisions_pedestrian', 'collisions_vehicle', 'red_light', 'on_sidewalk', 'outside_lane_infraction', 'wrong_lane', 'off_road'] for infraction_type in infraction_types: for infraction in infractions[infraction_type]: if 'collisions' in infraction_type: typ = re.search('.*with type=(.*) and id.*', infraction).group(1) if 'walker' not in typ: ego_fault = False else: loc = re.search('.*x=(.*), y=(.*), z=(.*), ego_linear_speed=(.*), other_actor_linear_speed=(.*)\)', infraction) if loc: ego_linear_speed = float(loc.group(4)) other_actor_linear_speed = float(loc.group(5)) if ego_linear_speed < 0.1 or other_actor_linear_speed < 0: ego_fault = False else: loc = re.search('.*x=(.*), y=(.*), z=(.*)', infraction) if loc: ego_fault = False cur_behaviors = df[['behaviors']].to_numpy() if ego_fault: behaviors.append(cur_behaviors) kept_inds.append(np.array(range(total_length, total_length+cur_behaviors.shape[0]))) count += 1 total_length += cur_behaviors.shape[0] kept_inds = np.concatenate(kept_inds) print(f'{count}/{len(route_files)} are used') misbehavior_labels = np.concatenate(behaviors).squeeze() print(misbehavior_labels.shape, len(dataset)) print(np.sum(misbehavior_labels==0), np.sum(misbehavior_labels==1)) num_of_iterations = len(dataset) // g_conf.BATCH_SIZE image_embeddings = [] for data in data_loader: inputs_data = torch.squeeze(data['rgb'].cuda()) # separate_affordance e, inter = encoder_model.forward_encoder(inputs_data, dataset.extract_inputs(data).cuda(),torch.squeeze(dataset.extract_commands(data).cuda())) # print(len(e), e[0].shape) image_embeddings.append(e.cpu()) iteration += 1 if iteration == num_of_iterations: break image_embeddings = np.concatenate(image_embeddings, axis=0) image_embeddings = image_embeddings[kept_inds] print(image_embeddings.shape, misbehavior_labels.shape) np.savez('misbehavior/embeddings_and_misbehavior_labels', image_embeddings=image_embeddings, misbehavior_labels=misbehavior_labels[:len(image_embeddings)]) coil_logger.add_message('Finished', {}) except KeyboardInterrupt: coil_logger.add_message('Error', {'Message': 'Killed By User'}) except RuntimeError as e: coil_logger.add_message('Error', {'Message': str(e)}) except: traceback.print_exc() coil_logger.add_message('Error', {'Message': 'Something Happened'})
def execute(gpu, exp_batch, exp_alias, suppress_output=True, number_of_workers=12): """ The main encoder training function. Args: gpu: The GPU id number exp_batch: the folder with the experiments exp_alias: the alias, experiment name suppress_output: if the output are going to be saved on a file number_of_workers: the number of threads used for data loading Returns: None """ try: # We set the visible cuda devices to select the GPU os.environ["CUDA_VISIBLE_DEVICES"] = gpu g_conf.VARIABLE_WEIGHT = {} # At this point the log file with the correct naming is created. # You merge the yaml file with the global configuration structure. merge_with_yaml(os.path.join('configs', exp_batch, exp_alias + '.yaml')) set_type_of_process('train_encoder') # Set the process into loading status. coil_logger.add_message('Loading', {'GPU': os.environ["CUDA_VISIBLE_DEVICES"]}) # we set a seed for this exp seed_everything(seed=g_conf.MAGICAL_SEED) # Put the output to a separate file if it is the case if suppress_output: if not os.path.exists('_output_logs'): os.mkdir('_output_logs') sys.stdout = open(os.path.join('_output_logs', exp_alias + '_' + g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) sys.stderr = open(os.path.join('_output_logs', exp_alias + '_err_' + g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) # Preload option if g_conf.PRELOAD_MODEL_ALIAS is not None: checkpoint = torch.load(os.path.join('_logs', g_conf.PRELOAD_MODEL_BATCH, g_conf.PRELOAD_MODEL_ALIAS, 'checkpoints', str(g_conf.PRELOAD_MODEL_CHECKPOINT) + '.pth')) # Get the latest checkpoint to be loaded # returns none if there are no checkpoints saved for this model checkpoint_file = get_latest_saved_checkpoint() if checkpoint_file is not None: checkpoint = torch.load(os.path.join('_logs', exp_batch, exp_alias, 'checkpoints', str(get_latest_saved_checkpoint()))) iteration = checkpoint['iteration'] best_loss = checkpoint['best_loss'] best_loss_iter = checkpoint['best_loss_iter'] else: iteration = 0 best_loss = 1000000000.0 best_loss_iter = 0 # Define the dataset. This structure is has the __get_item__ redefined in a way # that you can access the positions from the root directory as a in a vector. # full_dataset = os.path.join(os.environ["SRL_DATASET_PATH"], g_conf.TRAIN_DATASET_NAME) # By instantiating the augmenter we get a callable that augment images and transform them # into tensors. augmenter = Augmenter(g_conf.AUGMENTATION) if len(g_conf.EXPERIENCE_FILE) == 1: json_file_name = str(g_conf.EXPERIENCE_FILE[0]).split('/')[-1].split('.')[-2] else: json_file_name = str(g_conf.EXPERIENCE_FILE[0]).split('/')[-1].split('.')[-2] + '_' + str(g_conf.EXPERIENCE_FILE[1]).split('/')[-1].split('.')[-2] dataset = CoILDataset(transform=augmenter, preload_name=g_conf.PROCESS_NAME + '_' + json_file_name + '_' + g_conf.DATA_USED) print ("Loaded dataset") data_loader = select_balancing_strategy(dataset, iteration, number_of_workers) encoder_model = EncoderModel(g_conf.ENCODER_MODEL_TYPE, g_conf.ENCODER_MODEL_CONFIGURATION) encoder_model.cuda() encoder_model.train() print(encoder_model) optimizer = optim.Adam(encoder_model.parameters(), lr=g_conf.LEARNING_RATE) if checkpoint_file is not None or g_conf.PRELOAD_MODEL_ALIAS is not None: encoder_model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) accumulated_time = checkpoint['total_time'] loss_window = coil_logger.recover_loss_window('train', iteration) else: # We accumulate iteration time and keep the average speed accumulated_time = 0 loss_window = [] print ("Before the loss") if g_conf.ENCODER_MODEL_TYPE in ['ETE']: criterion = Loss(g_conf.LOSS_FUNCTION) # Loss time series window for data in data_loader: if iteration % 1000 == 0: adjust_learning_rate_auto(optimizer, loss_window) capture_time = time.time() encoder_model.zero_grad() """ #################################### ENCODER_MODEL_TYPE can be: one-step-affordances, ETE, stdim, action_prediction #################################### - one-step-affordances: input RGB images, compute affordances loss. - ETE: input RGB images and speed, compute action loss (steering, throttle, brake) - stdim: input two consecutive RGB images, compute the feature loss - action_prediction: input two consecutive RGB images, compute action classification loss - forward: input two consecutive RGB images, compute action loss + feature loss """ if g_conf.ENCODER_MODEL_TYPE in ['one-step-affordances']: loss_function_params = { 'classification_gt': dataset.extract_affordances_targets(data, 'classification').cuda(), # harzard stop, red_light.... 'class_weights': g_conf.AFFORDANCES_CLASS_WEIGHT, 'regression_gt': dataset.extract_affordances_targets(data, 'regression').cuda(), 'variable_weights': g_conf.AFFORDANCES_VARIABLE_WEIGHT } # we input RGB images, speed and command to train affordances loss = encoder_model(torch.squeeze(data['rgb'].cuda()), dataset.extract_inputs(data).cuda(), torch.squeeze(dataset.extract_commands(data).cuda()), loss_function_params) if iteration == 0: state = { 'iteration': iteration, 'state_dict': encoder_model.state_dict(), 'best_loss': best_loss, 'total_time': accumulated_time, 'optimizer': optimizer.state_dict(), 'best_loss_iter': best_loss_iter } torch.save(state, os.path.join('_logs', exp_batch, exp_alias , 'checkpoints', 'inital.pth')) loss.backward() optimizer.step() elif g_conf.ENCODER_MODEL_TYPE in ['forward']: # We sample another batch to avoid the superposition inputs_data = [data['rgb'][0].cuda(), data['rgb'][1].cuda()] loss, loss_other, loss_ete = encoder_model(inputs_data, dataset.extract_inputs(data), # We also add measurements and commands dataset.extract_commands(data), dataset.extract_targets(data)[0].cuda() ) loss.backward() optimizer.step() elif g_conf.ENCODER_MODEL_TYPE in ['ETE']: branches = encoder_model(torch.squeeze(data['rgb'].cuda()), dataset.extract_inputs(data).cuda(), torch.squeeze(dataset.extract_commands(data).cuda())) loss_function_params = { 'branches': branches, 'targets': dataset.extract_targets(data).cuda(), # steer, throttle, brake 'inputs': dataset.extract_inputs(data).cuda(), # speed 'branch_weights': g_conf.BRANCH_LOSS_WEIGHT, 'variable_weights': g_conf.VARIABLE_WEIGHT } loss, _ = criterion(loss_function_params) loss.backward() optimizer.step() elif g_conf.ENCODER_MODEL_TYPE in ['stdim']: inputs_data = [data['rgb'][0].cuda(), data['rgb'][1].cuda()] loss, _, _ = encoder_model(inputs_data, dataset.extract_inputs(data), # We also add measurements and commands dataset.extract_commands(data) ) loss.backward() optimizer.step() elif g_conf.ENCODER_MODEL_TYPE in ['action_prediction']: inputs_data = [data['rgb'][0].cuda(), data['rgb'][1].cuda()] loss, _, _ = encoder_model(inputs_data, dataset.extract_inputs(data), # We also add measurements and commands dataset.extract_commands(data), dataset.extract_targets(data)[0].cuda() ) loss.backward() optimizer.step() else: raise ValueError("The encoder model type is not know") """ #################################### Saving the model if necessary #################################### """ if is_ready_to_save(iteration): state = { 'iteration': iteration, 'state_dict': encoder_model.state_dict(), 'best_loss': best_loss, 'total_time': accumulated_time, 'optimizer': optimizer.state_dict(), 'best_loss_iter': best_loss_iter } torch.save(state, os.path.join('_logs', exp_batch, exp_alias , 'checkpoints', str(iteration) + '.pth')) iteration += 1 """ ################################################ Adding tensorboard logs. Making calculations for logging purposes. These logs are monitored by the printer module. ################################################# """ if g_conf.ENCODER_MODEL_TYPE in ['stdim', 'action_prediction', 'forward']: coil_logger.add_scalar('Loss', loss.data, iteration) coil_logger.add_image('f_t', torch.squeeze(data['rgb'][0]), iteration) coil_logger.add_image('f_ti', torch.squeeze(data['rgb'][1]), iteration) elif g_conf.ENCODER_MODEL_TYPE in ['one-step-affordances', 'ETE']: coil_logger.add_scalar('Loss', loss.data, iteration) coil_logger.add_image('Image', torch.squeeze(data['rgb']), iteration) if loss.data < best_loss: best_loss = loss.data.tolist() best_loss_iter = iteration accumulated_time += time.time() - capture_time coil_logger.add_message('Iterating', {'Iteration': iteration, 'Loss': loss.data.tolist(), 'Images/s': (iteration * g_conf.BATCH_SIZE) / accumulated_time, 'BestLoss': best_loss, 'BestLossIteration': best_loss_iter}, iteration) loss_window.append(loss.data.tolist()) coil_logger.write_on_error_csv('train', loss.data) if iteration % 100 == 0: print('Train Iteration: {} [{}/{} ({:.0f}%)] \t Loss: {:.6f}'.format( iteration, iteration, g_conf.NUMBER_ITERATIONS, 100. * iteration / g_conf.NUMBER_ITERATIONS, loss.data)) coil_logger.add_message('Finished', {}) except KeyboardInterrupt: coil_logger.add_message('Error', {'Message': 'Killed By User'}) except RuntimeError as e: coil_logger.add_message('Error', {'Message': str(e)}) except: traceback.print_exc() coil_logger.add_message('Error', {'Message': 'Something Happened'})
def execute(gpu, exp_batch, exp_alias, suppress_output=True): # We set the visible cuda devices # TODO: probable race condition, the train has to be started before. try: os.environ["CUDA_VISIBLE_DEVICES"] = gpu # At this point the log file with the correct naming is created. merge_with_yaml(os.path.join('configs', exp_batch, exp_alias + '.yaml')) set_type_of_process('train') coil_logger.add_message('Loading', {'GPU': gpu}) if not os.path.exists('_output_logs'): os.mkdir('_output_logs') # Put the output to a separate file if suppress_output: sys.stdout = open(os.path.join( '_output_logs', g_conf.PROCESS_NAME + '_' + str(os.getpid()) + ".out"), "a", buffering=1) checkpoint_file = get_latest_saved_checkpoint() if checkpoint_file is not None: checkpoint = torch.load( os.path.join('_logs', exp_batch, exp_alias, 'checkpoints', str(get_latest_saved_checkpoint()))) iteration = checkpoint['iteration'] best_loss = checkpoint['best_loss'] best_loss_iter = checkpoint['best_loss_iter'] else: iteration = 0 best_loss = 10000.0 best_loss_iter = 0 # TODO: The checkpoint will continue, so it should erase everything up to the iteration on tensorboard # Define the dataset. This structure is has the __get_item__ redefined in a way # that you can access the HD_FILES positions from the root directory as a in a vector. full_dataset = os.path.join(os.environ["COIL_DATASET_PATH"], g_conf.TRAIN_DATASET_NAME) # augmenter_cpu = iag.AugmenterCPU(g_conf.AUGMENTATION_SUITE_CPU) # By instanciating the augmenter we get a callable that augment images and transform them # into tensors. augmenter = Augmenter(g_conf.AUGMENTATION) dataset = CoILDataset(full_dataset, transform=augmenter) data_loader = select_balancing_strategy(dataset, iteration) model = CoILModel(g_conf.MODEL_TYPE, g_conf.MODEL_CONFIGURATION) model.cuda() if checkpoint_file is not None: model.load_state_dict(checkpoint['state_dict']) print(model) criterion = Loss(g_conf.LOSS_FUNCTION) optimizer = optim.Adam(model.parameters(), lr=g_conf.LEARNING_RATE) print(dataset.meta_data) print(model) if checkpoint_file is not None: accumulated_time = checkpoint['total_time'] else: accumulated_time = 0 # We accumulate iteration time and keep the average speed #TODO: test experiment continuation. Is the data sampler going to continue were it started.. ? capture_time = time.time() for data in data_loader: input_data, float_data = data # get the control commands from float_data, size = [120,1] controls = float_data[:, dataset.controls_position(), :] # The output(branches) is a list of 5 branches results, each branch is with size [120,3] model.zero_grad() branches = model(torch.squeeze(input_data['rgb'].cuda()), dataset.extract_inputs(float_data).cuda()) loss = criterion(branches, dataset.extract_targets(float_data).cuda(), controls.cuda(), dataset.extract_inputs(float_data).cuda(), branch_weights=g_conf.BRANCH_LOSS_WEIGHT, variable_weights=g_conf.VARIABLE_WEIGHT) # TODO: All these logging things could go out to clean up the main if loss.data < best_loss: best_loss = loss.data.tolist() best_loss_iter = iteration # Log a random position position = random.randint(0, len(float_data) - 1) output = model.extract_branch(torch.stack(branches[0:4]), controls) error = torch.abs(output - dataset.extract_targets(float_data).cuda()) # TODO: For now we are computing the error for just the correct branch, it could be multi- branch, coil_logger.add_scalar('Loss', loss.data, iteration) coil_logger.add_image('Image', torch.squeeze(input_data['rgb']), iteration) loss.backward() optimizer.step() accumulated_time += time.time() - capture_time capture_time = time.time() # TODO: Get only the float_data that are actually generating output # TODO: itearation is repeating , and that is dumb coil_logger.add_message( 'Iterating', { 'Iteration': iteration, 'Loss': loss.data.tolist(), 'Images/s': (iteration * g_conf.BATCH_SIZE) / accumulated_time, 'BestLoss': best_loss, 'BestLossIteration': best_loss_iter, 'Output': output[position].data.tolist(), 'GroundTruth': dataset.extract_targets( float_data)[position].data.tolist(), 'Error': error[position].data.tolist(), 'Inputs': dataset.extract_inputs(float_data)[position].data.tolist() }, iteration) # TODO: For now we are computing the error for just the correct branch, it could be multi-branch, # TODO: save also the optimizer state dictionary if is_ready_to_save(iteration): state = { 'iteration': iteration, 'state_dict': model.state_dict(), 'best_loss': best_loss, 'total_time': accumulated_time, 'best_loss_iter': best_loss_iter } # TODO : maybe already summarize the best model ??? torch.save( state, os.path.join('_logs', exp_batch, exp_alias, 'checkpoints', str(iteration) + '.pth')) iteration += 1 print(iteration) if iteration % 1000 == 0: adjust_learning_rate(optimizer, iteration) del data coil_logger.add_message('Finished', {}) except KeyboardInterrupt: coil_logger.add_message('Error', {'Message': 'Killed By User'}) except: traceback.print_exc() coil_logger.add_message('Error', {'Message': 'Something Happened'})