Exemple #1
0
def run_training():

    # you need to change the directories to yours.
    s_train_dir = '/home/hrz/projects/tensorflow/emotion/ck+/CK+YuanTu'
    T_train_dir = '/home/hrz/projects/tensorflow/emotion/ck+/CK+X_mid'
    logs_train_dir = '/home/hrz/projects/tensorflow/emotion/ck+'
    s_train, s_train_label = input_data.get_files(s_train_dir)
    s_train_batch, s_train_label_batch = input_data.get_batch(
        s_train, s_train_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)
    T_train, T_train_label = input_data.get_files(T_train_dir)

    T_train_batch, T_train_label_batch = input_data.get_batch(
        T_train, T_train_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)

    train_logits = model.inference(s_train_batch, T_train_batch, BATCH_SIZE,
                                   N_CLASSES)
    train_loss = model.losses(train_logits, s_train_label_batch)
    train_op = model.trainning(train_loss, learning_rate)
    train__acc = model.evaluation(train_logits, s_train_label_batch)

    summary_op = tf.summary.merge_all()  #汇总操作
    sess = tf.Session()  #定义sess
    train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph)  #
    saver = tf.train.Saver()  #保存操作

    sess.run(tf.global_variables_initializer())  #初始化所有变量
    coord = tf.train.Coordinator()  #设置多线程协调器
    threads = tf.train.start_queue_runners(
        sess=sess, coord=coord)  #开始Queue Runners(队列运行器)

    #开始训练过程
    try:
        for step in np.arange(MAX_STEP):
            if coord.should_stop():
                break
            _, tra_loss, tra_acc = sess.run([train_op, train_loss, train__acc])

            if step % 50 == 0:
                print('Step %d, train loss = %.2f, train accuracy = %.2f%%' %
                      (step, tra_loss, tra_acc * 100.0))
                #运行汇总操作,写入汇总
                summary_str = sess.run(summary_op)
                train_writer.add_summary(summary_str, step)

            if step % 800 == 0 or (step + 1) == MAX_STEP:
                #保存当前模型和权重到 logs_train_dir,global_step为当前迭代次数
                checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')
                saver.save(sess, checkpoint_path, global_step=step)

    except tf.errors.OutOfRangeError:
        print('Done training -- epoch limit reached')
    finally:
        coord.request_stop()

    coord.join(threads)
    sess.close()
Exemple #2
0
def run_training(N_CLASSES, IMG_W, IMG_H, BATCH_SIZE, MAX_STEP, CAPACITY,
                 model1_data, learning_rate, total):
    train, train_label, randomList = input_data.get_files(model1_data, total)
    train_batch, train_label_batch = input_data.get_batch(
        train, train_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)
    train_logits = model.inference(train_batch, BATCH_SIZE, N_CLASSES)
    return train_logits, train_batch, train_label_batch, randomList
Exemple #3
0
def run_training():
    traindir = 'data/train/'
    logs_train_dir = 'logs/train/'

    train_image, train_label = input_data.get_files(traindir)
    train_batch, train_label_batch = input_data.get_batch(
        train_image, train_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)

    train_logits = model.inference(train_batch, BATCH_SIZE, N_CLASSES)
    train_loss = model.losses(train_logits, train_label_batch)
    train_op = model.training(train_loss, learning_rate)
    train_acc = model.evaluation(train_logits, train_label_batch)

    sess = tf.Session()
    saver = tf.train.Saver()

    sess.run(tf.global_variables_initializer())
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    try:
        for step in range(MAX_STEP):
            if coord.should_stop():
                break
            _, tra_loss, tra_acc = sess.run([train_op, train_loss, train_acc])

            if step % 20 == 0 or (step + 1) == MAX_STEP:
                checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')
                saver.save(sess, checkpoint_path, global_step=step)
    except tf.errors.OutOfRangeError:
        print('Done training -- epoch limit reached')
    finally:
        coord.request_stop()
    coord.join(threads)
    sess.close()
Exemple #4
0
def evaluate_one_image():
    train_dir = '/home/xiaoyi/data/dogs_vs_cats/data/train/'
    train, train_label = input_data.get_files(train_dir)
    image_array = get_one_image(train)

    with tf.Graph().as_default():
        BATCH_SIZE = 1
        N_CLASSES = 2

        image = tf.cast(image_array, tf.float32)
        image = tf.reshape(image, [1, 208, 208, 3])
        logit = model.inference(image, BATCH_SIZE, N_CLASSES)
        logit = tf.nn.softmax(logit)

        x = tf.placeholder(tf.float32, shape=[208, 208, 3])
        logs_train_dir = '/home/xiaoyi/data/dogs_vs_cats/logs/train/'
        saver = tf.train.Saver()
        with tf.Session() as sess:
            print('Reading checkpoints...')
            ckpt = tf.train.get_checkpoint_state(logs_train_dir)
            if ckpt and ckpt.model_checkpoint_path:
                global_step = ckpt.model_checkpoint_path.split('/')[-1].split(
                    '-')[-1]
                saver.restore(sess, ckpt.model_checkpoint_path)

                print('loading seccess,globol_step is %s' % global_step)
            else:
                print('No checkpoint file found')
            prediction = sess.run(logit, feed_dict={x: image_array})
            print(prediction)
            max_index = np.argmax(prediction)
            if max_index == 0:
                print('This is a cat with possibility %.6f' % prediction[:, 0])
            else:
                print('This is a dog with possibility %.6f' % prediction[:, 1])
def run_training():
    # 数据集
    train_dir = r'D:\Python\mnist\test_my\big_0_1_4/'  # My dir--20170727-csq
    # logs_train_dir 存放训练模型的过程的数据,在tensorboard 中查看
    logs_train_dir = r'D:\PyCharm_code\Ai\Tensorflow_mooc_note\6\MinstNew\logs\train/'

    # 获取图片和标签集
    train, train_label = input_data.get_files(train_dir)
    # 生成批次
    train_batch, train_label_batch = input_data.get_batch(train,
                                                          train_label,
                                                          IMG_W,
                                                          IMG_H,
                                                          BATCH_SIZE,
                                                          CAPACITY)
    # 进入模型
    train_logits = model.inference(train_batch, BATCH_SIZE, N_CLASSES)
    # 获取 loss
    train_loss = model.losses(train_logits, train_label_batch)
    # 训练
    train_op = model.trainning(train_loss, learning_rate)
    # 获取准确率
    train__acc = model.evaluation(train_logits, train_label_batch)
    # 合并 summary
    summary_op = tf.summary.merge_all()
    sess = tf.Session()
    # 保存summary
    train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph)
    saver = tf.train.Saver()

    sess.run(tf.global_variables_initializer())
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    try:
        for step in np.arange(MAX_STEP):
            ckpt = tf.train.get_checkpoint_state(logs_train_dir)
            if ckpt and ckpt.model_checkpoint_path:
                saver.restore(sess, ckpt.model_checkpoint_path)
            if coord.should_stop():
                break
            _, tra_loss, tra_acc = sess.run([train_op, train_loss, train__acc])

            if step % 50 == 0:
                print('Step %d, train loss = %.2f, train accuracy = %.2f%%' % (step, tra_loss, tra_acc * 100.0))
                summary_str = sess.run(summary_op)
                train_writer.add_summary(summary_str, step)

            if step % 2000 == 0 or (step + 1) == MAX_STEP:
                # 每隔2000步保存一下模型,模型保存在 checkpoint_path 中
                checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')
                saver.save(sess, checkpoint_path, global_step=step)
    except tf.errors.OutOfRangeError:
        print('Done training -- epoch limit reached')
    finally:
        coord.request_stop()
    coord.join(threads)
    sess.close()
Exemple #6
0
def evaluate_one_image():
    #Test one image against the saved models and parameters

    train_dir = 'E:/data/17_DEG/'
    train, train_label = input_data.get_files(train_dir)

    n = len(train)
    ind = np.random.randint(0, n)
    img_dir = train[ind]

    image = Image.open(img_dir)
    image = image.resize([128, 128])
    #image = tf.random_crop(image, [96, 96, 1])# randomly crop the image size to 96 x 96
    image = tf.image.random_flip_left_right(image)
    #image = tf.image.random_brightness(image, max_delta=63)
    image = tf.image.random_contrast(image, lower=0.2, upper=1.8)

    plt.imshow(image)

    image1 = np.array(image)

    with tf.Graph().as_default():
        BATCH_SIZE = 1
        N_CLASSES = 3

        image = tf.cast(image1, tf.float32)
        image = tf.image.per_image_standardization(image)
        image = tf.reshape(image, [1, 96, 96, 1])
        logit = model.inference(image, BATCH_SIZE, N_CLASSES)

        logit = tf.nn.softmax(logit)

        x = tf.placeholder(tf.float32, shape=[96, 96, 1])

        logs_train_dir = 'E:/data/logs/train/'

        saver = tf.train.Saver()

        with tf.Session() as sess:

            print("Reading checkpoints...")
            ckpt = tf.train.get_checkpoint_state(logs_train_dir)
            if ckpt and ckpt.model_checkpoint_path:
                global_step = ckpt.model_checkpoint_path.split('/')[-1].split(
                    '-')[-1]
                saver.restore(sess, ckpt.model_checkpoint_path)
                print('Loading success, global_step is %s' % global_step)
            else:
                print('No checkpoint file found')

            prediction = sess.run(logit, feed_dict={x: image1})
            max_index = np.argmax(prediction)
            if max_index == 0:
                print('This is BMP2 with possibility %.6f' % prediction[:, 0])
            if max_index == 1:
                print('This is BTR70 with possibility %.6f' % prediction[:, 1])
            if max_index == 2:
                print('This is T72 with possibility %.6f' % prediction[:, 2])
Exemple #7
0
def evaluate_one_image():
    '''Test one image against the saved models and parameters
    '''

    # you need to change the directories to yours.
    train_dir = './train/'
    train, train_label = input_data.get_files(train_dir)
    image_array = get_one_image(train)

    with tf.Graph().as_default():
        BATCH_SIZE = 1
        N_CLASSES = 5

        image = tf.cast(image_array, tf.float32)
        image = tf.image.per_image_standardization(image)
        image = tf.reshape(image, [1, 208, 208, 3])
        logit = model.inference(image, BATCH_SIZE, N_CLASSES)

        logit = tf.nn.softmax(logit)

        x = tf.placeholder(tf.float32, shape=[208, 208, 3])

        # you need to change the directories to yours.
        logs_train_dir = './train_logs/'

        saver = tf.train.Saver()

        with tf.Session() as sess:

            print("Reading checkpoints...")
            ckpt = tf.train.get_checkpoint_state(logs_train_dir)
            if ckpt and ckpt.model_checkpoint_path:
                global_step = ckpt.model_checkpoint_path.split('/')[-1].split(
                    '-')[-1]
                saver.restore(sess, ckpt.model_checkpoint_path)
                print('Loading success, global_step is %s' % global_step)
            else:
                print('No checkpoint file found')

            prediction = sess.run(logit, feed_dict={x: image_array})
            print(prediction)
            max_index = np.argmax(prediction)
            if max_index == 0:
                print('This is a daisy with possibility %.6f' %
                      prediction[:, 0])
            elif max_index == 1:
                print('This is a roses with possibility %.6f' %
                      prediction[:, 1])
            elif max_index == 2:
                print('This is a sunflowers with possibility %.6f' %
                      prediction[:, 2])
            elif max_index == 3:
                print('This is a dandelion with possibility %.6f' %
                      prediction[:, 3])
            else:
                print('This is a tuplits with possibility %.6f' %
                      prediction[:, 4])
Exemple #8
0
def evaluate_random_image():
    '''Test one image against the saved models and parameters
    '''

    # you need to change the directories to yours.
    train_dir = 'data/train/'
    train, train_label = input_data.get_files(train_dir)
    random_img = get_one_random_image(train)
    evaluate_image(random_img)
def run_training():
    '''

    '''
    '''
    tf.train.Coordinator和tf.train.start_queue_runners貌似都要在sess.run之前使用,不然会无法运行
    try:这些语法貌似是模板,直接使用就好
    '''

    # you need to change the directories to yours.
    train_dir = '/home/kevin/tensorflow/cats_vs_dogs/data/train/'
    logs_train_dir = '/home/kevin/tensorflow/cats_vs_dogs/logs/train/'

    train, train_label = input_data.get_files(train_dir)

    train_batch, train_label_batch = input_data.get_batch(
        train, train_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)
    train_logits = model.inference(train_batch, BATCH_SIZE, N_CLASSES)
    train_loss = model.losses(train_logits, train_label_batch)
    train_op = model.trainning(train_loss, learning_rate)
    train__acc = model.evaluation(train_logits, train_label_batch)

    summary_op = tf.summary.merge_all()
    sess = tf.Session()
    train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph)
    saver = tf.train.Saver()

    sess.run(tf.global_variables_initializer())
    coord = tf.train.Coordinator()  #和下面的queue_runners配合使用,发生错误可以正确关闭线程
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    try:
        for step in np.arange(MAX_STEP):
            if coord.should_stop():
                break
            _, tra_loss, tra_acc = sess.run([train_op, train_loss, train__acc])

            if step % 50 == 0:
                print('Step %d, train loss = %.2f, train accuracy = %.2f%%' %
                      (step, tra_loss, tra_acc * 100.0))
                summary_str = sess.run(summary_op)
                train_writer.add_summary(summary_str, step)

            if step % 2000 == 0 or (step + 1) == MAX_STEP:
                checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')
                saver.save(sess, checkpoint_path, global_step=step)

    except tf.errors.OutOfRangeError:
        print('Done training -- epoch limit reached')
    finally:
        # When done, ask the threads to stop.
        coord.request_stop()

    # Wait for threads to finish.
    coord.join(threads)
    sess.close()
def run_training():
    # dataset
    train_dir = '/Users/xcliang/PycharmProjects/cats_vs_dogs/data/train/'  # My dir--20170727-csq
    # logs_train_dir  store the data of the process of training model, view in tensorbpard
    logs_train_dir = '/Users/xcliang/PycharmProjects/cats_vs_dogs/data/saveNet'

    # Get images and tag sets
    train, train_label = input_data.get_files(train_dir)
    # Generate batch
    train_batch, train_label_batch = input_data.get_batch(train,
                                                          train_label,
                                                          IMG_W,
                                                          IMG_H,
                                                          BATCH_SIZE,
                                                          CAPACITY)
    # Entering the model
    train_logits = model.inference(train_batch, BATCH_SIZE, N_CLASSES)
    # Get loss
    train_loss = model.losses(train_logits, train_label_batch)
    # train
    train_op = model.trainning(train_loss, learning_rate)
    # Get accuracy
    train__acc = model.evaluation(train_logits, train_label_batch)
    # merge summary
    summary_op = tf.summary.merge_all()
    sess = tf.Session()
    # save summary
    train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph)
    saver = tf.train.Saver()

    sess.run(tf.global_variables_initializer())
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    try:
        for step in np.arange(MAX_STEP):
            if coord.should_stop():
                break
            _, tra_loss, tra_acc = sess.run([train_op, train_loss, train__acc])

            if step % 50 == 0:
                print('Step %d, train loss = %.2f, train accuracy = %.2f%%' % (step, tra_loss, tra_acc * 100.0))
                summary_str = sess.run(summary_op)
                train_writer.add_summary(summary_str, step)

            if step % 2000 == 0 or (step + 1) == MAX_STEP:
                # Save the model every 2000 steps and save the model in checkpoint_path
                checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')
                saver.save(sess, checkpoint_path, global_step=step)

    except tf.errors.OutOfRangeError:
        print('Done training -- epoch limit reached')
    finally:
        coord.request_stop()
    coord.join(threads)
    sess.close()
Exemple #11
0
def run_evaluating():

    eval_data, eval_label = input_data.get_files(FLAGS.eval_dir)
    eval_batch, eval_label_batch = input_data.get_batch(
        eval_data, eval_label, FLAGS.height, FLAGS.width, FLAGS.batch_size,
        FLAGS.capacity)

    keep_prob = tf.placeholder(tf.float32)

    hypothesis, cross_entropy, eval_step = model.make_network(
        eval_batch, eval_label_batch, keep_prob)

    cost_sum = tf.summary.scalar("cost_eval", cross_entropy)

    eval_accuracy = tf.nn.in_top_k(hypothesis, eval_label_batch, 1)
    eval_acc = model.evaluation(hypothesis, eval_label_batch)

    saver = tf.train.Saver()

    print('Start Evaluation......')
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())

        total_sample_count = FLAGS.eval_steps * FLAGS.batch_size
        true_count = 0

        writer = tf.summary.FileWriter(FLAGS.log_dir)
        writer.add_graph(sess.graph)  # Show the graph

        merge_sum = tf.summary.merge_all()

        saver.restore(sess, './CNN_Homework/logs/model.ckpt-36000')

        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)

        for step in np.arange(FLAGS.eval_steps + 1):
            _, summary, eval_loss = sess.run(
                [eval_step, merge_sum, cross_entropy],
                feed_dict={keep_prob: 1.0})
            predictions, accuracy = sess.run([eval_accuracy, eval_acc],
                                             feed_dict={keep_prob: 1.0})
            writer.add_summary(summary, global_step=step)

            true_count = true_count + np.sum(predictions)

            if step % 10 == 0:
                print('step : %d, loss : %f, eval_accuracy : %f' %
                      (step, eval_loss, accuracy * 100))

        coord.request_stop()
        coord.join(threads)

        print('precision : %f' % (true_count / total_sample_count))

        sess.close()
Exemple #12
0
def run_training():
    # you need to change the directories to yours.
    train_dir = 'D:/tensorflow/practicePlus/ResNet/train/'
    # val_dir = 'D:/tensorflow/practicePlus/cats_vs_dogs/test'
    logs_train_dir = 'D:/tensorflow/practicePlus/ResNet/save/'

    train, train_label = input_data.get_files(train_dir)
    # val, val_label = input_data.get_files(val_dir)
    train_batch, train_label_batch = input_data.get_batch(train, train_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)
    # val_batch, val_label_batch = input_data.get_batch(val, val_label,IMG_W,IMG_H,BATCH_SIZE,CAPACITY)

    # train
    train_logits = model_resnet50.inference(train_batch, BATCH_SIZE, N_CLASSES)
    train_loss = model_resnet50.losses(train_logits, train_label_batch)
    train_op = model_resnet50.trainning(train_loss, learning_rate)
    train_acc = model_resnet50.evaluation(train_logits, train_label_batch)

    # validation
    # test_logits = model.inference(val_batch,BATCH_SIZE,N_CLASSES)
    # test_loss = model.losses(test_logits, val_label_batch)
    # test_acc = model.evaluation(test_logits, val_label_batch)

    summary_op = tf.summary.merge_all()

    sess = tf.Session()
    train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph)
    saver = tf.train.Saver()

    sess.run(tf.global_variables_initializer())

    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    # batch trainning
    try:
        # one step one batch
        for step in np.arange(MAX_STEP):
            if coord.should_stop():
                break
            _, tra_loss, tra_acc = sess.run([train_op, train_loss, train_acc])

            # print loss and acc each 10 step, record log and write at same time
            if step % 10 == 0:
                print('Step %d, train loss = %.2f, train accuracy = %.2f%%' % (step, tra_loss, tra_acc * 100.0))
                summary_str = sess.run(summary_op)
                train_writer.add_summary(summary_str, step)
            # save modle each 500 steps
            if ((step == 500) or ((step + 1) == MAX_STEP)):
                checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')
                saver.save(sess, checkpoint_path, global_step=step)

    except tf.errors.OutOfRangeError:
        print('Done training -- epoch limit reached')

    finally:
        coord.request_stop()
Exemple #13
0
def run_training():

    #train set path
    train_dir = '/raidHDD/experimentData/Dev/Knife/hackthon/upup7/'
    #output model path
    logs_train_dir = '/raidHDD/experimentData/Dev/Knife/hackthon/modelX'
    if removeLogFIle:
        if os.path.exists(logs_train_dir):
            for logFile in os.listdir(logs_train_dir):
                os.remove("{0}/{1}".format(logs_train_dir, logFile))
            print("Delete Log file success...")
    train, train_label = input_data.get_files(train_dir)

    train_batch, train_label_batch = input_data.get_batch(
        train, train_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)
    train_logits = model.inference(train_batch, BATCH_SIZE, N_CLASSES)
    train_loss = model.losses(train_logits, train_label_batch)
    train_op = model.trainning(train_loss, learning_rate)
    train__acc = model.evaluation(train_logits, train_label_batch)

    summary_op = tf.summary.merge_all()
    config = tf.ConfigProto()
    config.gpu_options.per_process_gpu_memory_fraction = 0.8  #0.8 =GPU_memory usage
    sess = tf.Session(config=config)
    train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph)
    saver = tf.train.Saver()

    sess.run(tf.global_variables_initializer())
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    try:
        for step in np.arange(MAX_STEP):
            if coord.should_stop():
                break
            _, tra_loss, tra_acc = sess.run([train_op, train_loss, train__acc])

            if step % 50 == 0:
                print('Step %d, train loss = %.2f, train accuracy = %.2f%%' %
                      (step, tra_loss, tra_acc * 100.0))
                summary_str = sess.run(summary_op)
                train_writer.add_summary(summary_str, step)
                train_writer.flush()
            #only save end model
            if (step + 1) == MAX_STEP:
                checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')
                saver.save(sess, checkpoint_path, global_step=step)

    except tf.errors.OutOfRangeError:
        print('Done training -- epoch limit reached')
    finally:
        coord.request_stop()

    coord.join(threads)
    sess.close()
Exemple #14
0
def main(_):
    # train raw_data and label
    train_data, train_label = input_data.get_files(WORK_DIRECTORY)
    train_batch, train_label_batch = input_data.next_batch(
        train_data, train_label)

    # define train op
    train_logits = model.inference(train_batch, N_LABELS, BATCH_SIZE)
    train_loss = model.losses(train_logits, train_label_batch)
    train_op = model.optimization(train_loss, LEARNING_RATE)
    train_acc = model.evaluation(train_logits, train_label_batch)

    # start logs
    summary_op = tf.summary.merge_all()

    # Save logs
    saver = tf.train.Saver()

    sess = tf.Session()
    sess.run(tf.global_variables_initializer())
    # writen to logs
    train_writer = tf.summary.FileWriter(LOGS_DIRECTORY, sess.graph)

    # queue monitor
    coord = tf.train.Coordinator()
    # threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    # train
    try:
        for step in np.arange(MAX_STEP):
            if coord.should_stop():
                break
            # start op node
            _, loss, accuracy = sess.run([train_op, train_loss, train_acc])

            # print and write to logs.
            if step % 2 == 0:
                print(
                    f"Step [{step}/{MAX_STEP}] Loss {loss} Accuracy {accuracy * 100.0:.2f}%"
                )
                summary_str = sess.run(summary_op)
                train_writer.add_summary(summary_str, step)
            if step == MAX_STEP:
                # Save logs
                checkpoint_path = os.path.join(LOGS_DIRECTORY, 'model.ckpt')
                saver.save(sess, checkpoint_path, global_step=step)
                break
        print(f"Model saved! Global step = {step}")

    except tf.errors.OutOfRangeError:
        print('Done training -- epoch limit reached')

    finally:
        coord.request_stop()
        sess.close()
Exemple #15
0
def run_training():
    train_dir = "/home/sxy/PycharmProjects/defect2/data/train"
    logs_train_dir = "/home/sxy/PycharmProjects/defect2/logs/train-4"
    tf.reset_default_graph()
    train, train_label = input_data.get_files(train_dir)
    train_batch, train_label_batch = input_data.get_batch(
        train, train_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)
    train_logits = model.inference(train_batch, BATCH_SIZE, N_CLASSES)
    train_loss = model.losses(train_logits, train_label_batch)
    train_op = model.trainning(train_loss, learning_rate)
    train_acc = model.evaluation(train_logits, train_label_batch)
    #测试准确率
    # test_dir="/home/sxy/PycharmProjects/defect2/data/test"
    # test,test_label=input_data.get_files(test_dir)
    # test_batch,test_label_batch=input_data.get_batch(test,
    #                                                       test_label,
    #                                                       IMG_W,
    #                                                       IMG_H,
    #                                                       BATCH_SIZE,
    #                                                       CAPACITY)
    # test_logits = model.inference(test_batch, BATCH_SIZE, N_CLASSES)
    # train_loss = model.losses(test_logits, test_label_batch)
    # train_op = model.trainning(train_loss, learning_rate)
    # train_acc = model.evaluation(test_logits, test_label_batch)

    summary_op = tf.merge_all_summaries()
    sess = tf.Session()
    train_writer = tf.train.SummaryWriter(logs_train_dir, sess.graph)
    saver = tf.train.Saver()

    sess.run(tf.initialize_all_variables())
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    try:
        for step in np.arange(MAX_STEP):
            if coord.should_stop():
                break
            _, tra_loss, tra_acc = sess.run([train_op, train_loss, train_acc])

            if step % 50 == 0:
                print("Step %d, train loss = %.2f, train accuracy = %.2f%%" %
                      (step, tra_loss, tra_acc))
                summary_str = sess.run(summary_op)
                train_writer.add_summary(summary_str, step)
            if step % 2000 == 0 or (step + 1) == MAX_STEP:
                checkpoint_path = os.path.join(logs_train_dir, "model.ckpt")
                saver.save(sess, checkpoint_path, global_step=step)
    except tf.errors.OutOfRangeError:
        print("Done training -- epoch limit reached.")
    finally:
        coord.request_stop()

    coord.join(threads)
    sess.close()
Exemple #16
0
def run_training():

    # 调用input_data文件的get_files()函数获得image_list, label_list
    train, train_label = input_data.get_files(train_dir)
    # 获得image_batch, label_batch
    train_batch, train_label_batch = input_data.get_batch(
        train, train_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)
    # 进行前向训练,获得回归值
    train_logits = model.inference(train_batch, BATCH_SIZE, N_CLASSES)
    # 计算获得损失值loss
    train_loss = model.losses(train_logits, train_label_batch)
    # 对损失值进行优化
    train_op = model.trainning(train_loss, learning_rate)
    # 根据计算得到的损失值,计算出分类准确率
    train__acc = model.evaluation(train_logits, train_label_batch)
    # 将图形、训练过程合并在一起
    summary_op = tf.summary.merge_all()
    # 新建会话
    sess = tf.Session()
    # 将训练日志写入到logs_train_dir的文件夹内
    train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph)
    # 保存变量
    saver = tf.train.Saver()
    # 执行训练过程,初始化变量
    sess.run(tf.global_variables_initializer())
    # 创建一个线程协调器,用来管理之后在Session中启动的所有线程
    coord = tf.train.Coordinator()
    # 启动入队的线程,一般情况下,系统有多少个核,就会启动多少个入队线程(入队具体使用多少个线程在tf.train.batch中定义);
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    try:
        for step in np.arange(MAX_STEP):
            # 使用 coord.should_stop()来查询是否应该终止所有线程,当文件队列(queue)中的所有文件都已经读取出列的时候,
            # 会抛出一个 OutofRangeError 的异常,这时候就应该停止Sesson中的所有线程了;
            if coord.should_stop():
                break
            _, tra_loss, tra_acc = sess.run([train_op, train_loss, train__acc])
            # 每50步打印一次损失值和准确率
            if step % 50 == 0:
                print('Step %d, train loss = %.2f, train accuracy = %.2f%%' %
                      (step, tra_loss, tra_acc * 100.0))
                summary_str = sess.run(summary_op)
                train_writer.add_summary(summary_str, step)
            # 每2000步保存一次训练得到的模型
            if step % 2000 == 0 or (step + 1) == MAX_STEP:
                checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')
                saver.save(sess, checkpoint_path, global_step=step)
    # 如果读取到文件队列末尾会抛出此异常
    except tf.errors.OutOfRangeError:
        print('Done training -- epoch limit reached')
    finally:
        coord.request_stop()  # 使用coord.request_stop()来发出终止所有线程的命令

    coord.join(threads)  # coord.join(threads)把线程加入主线程,等待threads结束
Exemple #17
0
def run_training():

    # you need to change the directories to yours.
    train_dir = './data/train/train/'
    logs_train_dir = './logs/'

    train, train_label = input_data.get_files(train_dir)

    train_batch, train_label_batch = input_data.get_batch(
        train, train_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)

    with tf.name_scope("training"):
        train_logits = model.inference(train_batch, BATCH_SIZE, N_CLASSES)
        train_loss = model.losses(train_logits, train_label_batch)
        train_op = model.trainning(train_loss, learning_rate)
        train__acc = model.evaluation(train_logits, train_label_batch)

        summary_op = tf.summary.merge_all()

        sess = tf.Session()
        train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph)
        saver = tf.train.Saver()

        sess.run(tf.global_variables_initializer())
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)

        try:
            for step in np.arange(MAX_STEP):
                if coord.should_stop():
                    break
                _, tra_loss, tra_acc = sess.run(
                    [train_op, train_loss, train__acc])

                if step % 20 == 0:
                    print(
                        'Step %d, train loss = %.2f, train accuracy = %.2f%%' %
                        (step, tra_loss, tra_acc * 100.0))
                    summary_str = sess.run(summary_op)
                    train_writer.add_summary(summary_str, step)

                if step % 2000 == 0 or (step + 1) == MAX_STEP:
                    checkpoint_path = os.path.join(logs_train_dir,
                                                   'model.ckpt')
                    saver.save(sess, checkpoint_path,
                               global_step=step)  #保存模型和模型参数到logs_train_dir文件夹

        except tf.errors.OutOfRangeError:
            print('Done training -- epoch limit reached')

        finally:
            coord.request_stop()
        coord.join(threads)
        sess.close()
Exemple #18
0
def evaluate_running():

    with tf.Graph().as_default():
        data_dir = './data/KTH_RGB/'
        model_dir = './model/KTH_RGB6000/'
        train_image, train_label, val_image, val_label, n_test = input_data.get_files(
            data_dir, RATIO, ret_val_num=True)
        train_batch, train_label_batch = input_data.get_batch(
            train_image, train_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)
        val_batch, val_label_batch = input_data.get_batch(
            val_image, val_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)
        #
        logits = models.AlexNet(val_batch, N_CLASSES)
        top_k_op = tf.nn.in_top_k(logits, val_label_batch, 1)

        saver = tf.train.Saver(tf.global_variables())

        with tf.Session() as sess:

            print("Reading checkpoints...")
            ckpt = tf.train.get_checkpoint_state(model_dir)
            if ckpt and ckpt.model_checkpoint_path:
                global_step = ckpt.model_checkpoint_path.split('/')[-1].split(
                    '-')[-1]
                saver.restore(sess, ckpt.model_checkpoint_path)
                print('Loading success, global_step is %s' % global_step)
            else:
                print('No checkpoint file found')
                return

            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(sess=sess, coord=coord)

            try:

                num_iter = int(math.ceil(n_test / BATCH_SIZE))
                true_count = 0
                total_sample_count = num_iter * BATCH_SIZE
                step = 0

                while step < num_iter and not coord.should_stop():
                    val_images_, val_labels_ = sess.run(
                        [val_batch, val_label_batch])
                    predictions = sess.run([top_k_op])
                    true_count += np.sum(predictions)
                    step += 1
                    precision = true_count / total_sample_count
                print('precision = %.3f' % precision)
            except Exception as e:
                coord.request_stop(e)
            finally:
                coord.request_stop()
            coord.join(threads)
def evaluate_all_image():
    start_time = time.time()
    '''
    Test all image against the saved models and parameters.
    Return global accuracy of test_image_set
    ##############################################
    ##Notice that test image must has label to compare the prediction and real
    ##############################################
    '''
    # you need to change the directories to yours.
    test_dir = '/Users/sherry/Documents/Study/CS 6220/HW01/HW01_20190901/01_cats_vs_dogs/data/outlier_test/'
    N_CLASSES = 2
    print('-------------------------')
    test, test_label = input_data.get_files(test_dir)
    BATCH_SIZE = len(test)
    print('There are %d test images totally..' % BATCH_SIZE)
    print('-------------------------')
    test_batch, test_label_batch = input_data.get_batch(
        test, test_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)

    logits = model.inference(test_batch, BATCH_SIZE, N_CLASSES)
    testloss = model.losses(logits, test_label_batch)
    testacc = model.evaluation(logits, test_label_batch)

    logs_train_dir = '/Users/sherry/Documents/Study/CS 6220/HW01/HW01_20190901/01_cats_vs_dogs/data/logs_dataset1/train/'
    saver = tf.train.Saver()

    with tf.Session() as sess:
        print("Reading checkpoints...")
        ckpt = tf.train.get_checkpoint_state(logs_train_dir)
        if ckpt and ckpt.model_checkpoint_path:
            global_step = ckpt.model_checkpoint_path.split('/')[-1].split(
                '-')[-1]
            saver.restore(sess, ckpt.model_checkpoint_path)
            print('Loading success, global_step is %s' % global_step)
        else:
            print('No checkpoint file found')
        print('-------------------------')
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)
        test_loss, test_acc = sess.run([testloss, testacc])
        print('The model\'s loss is %.2f' % test_loss)
        correct = int(BATCH_SIZE * test_acc)
        print('Correct : %d' % correct)
        print('Wrong : %d' % (BATCH_SIZE - correct))
        print('The accuracy in test images are %.2f%%' % (test_acc * 100.0))
        print(
            "------------------------ Testing time is: %s seconds -----------------------"
            % (time.time() - start_time))
    coord.request_stop()
    coord.join(threads)
    sess.close()
    print("--- Testing time is: %s seconds ---" % (time.time() - start_time))
Exemple #20
0
def evaluate_one_image(test1_data, i, total, N_CLASSES):
    '''Test one image against the saved models and parameters
   '''

    train, train_label, randomList = input_data.get_files(test1_data, total)
    image_array = get_one_image(train, i)
    image = tf.cast(image_array, tf.float32)
    image = tf.image.per_image_standardization(image)
    image = tf.reshape(image, [1, 32, 32, 3])
    logit = model.inference(image, 1, N_CLASSES)

    return logit, image_array, train_label, randomList
Exemple #21
0
def evaluate_one_image():
    '''Test one image against the saved models and parameters
    '''

    # you need to change the directories to yours.
    train_dir = 'E:/Code/Dog vs Cat/test/'
    train = input_data.get_files(train_dir)
    image_array = get_one_image(train)

    with tf.Graph().as_default():
        BATCH_SIZE = 1
        N_CLASSES = 2

        image = tf.cast(image_array, tf.float32)
        image = tf.image.per_image_standardization(image)
        image = tf.reshape(image, [1, 208, 208, 3])

        x = tf.placeholder(tf.float32, shape=[1, 208, 208, 3])
        logit = model.inference(x, BATCH_SIZE, N_CLASSES)
        logit = tf.nn.softmax(logit)

        # you need to change the directories to yours.
        logs_train_dir = 'E:/Code/Dog vs Cat/log/'

        saver = tf.train.Saver()

        with tf.Session() as sess:

            print("Reading checkpoints...")
            ckpt = tf.train.get_checkpoint_state(logs_train_dir)
            if ckpt and ckpt.model_checkpoint_path:
                global_step = ckpt.model_checkpoint_path.split('/')[-1].split(
                    '-')[-1]
                saver.restore(sess, ckpt.model_checkpoint_path)
                print('Loading success, global_step is %s' % global_step)
            else:
                print('No checkpoint file found')

            image_ = sess.run(image)

            prediction = sess.run(logit, feed_dict={x: image_})
            print(prediction)
            max_index = np.argmax(prediction)
            if prediction[:, max_index] > 0.7:
                if max_index == 0:
                    print('This is a cat with possibility %.6f' %
                          prediction[:, 0])
                else:
                    print('This is a dog with possibility %.6f' %
                          prediction[:, 1])
            else:
                print('input error!')
Exemple #22
0
def run_training():
    train_dir = './train/' # 加载数据训练
    logs_train_dir = './save_model/' # 储存训练好的位置

    train, train_label = input_data.get_files(train_dir)

    train_batch, train_label_batch = input_data.get_batch(train,
                                                          train_label,
                                                          IMG_W,
                                                          IMG_H,
                                                          BATCH_SIZE,
                                                          CAPACITY)
    train_logits = model.inference(train_batch, BATCH_SIZE, N_CLASSES,True) # forward pass
    train_loss = model.losses(train_logits, train_label_batch) # 设置损失函数
    train_op = model.trainning(train_loss,learning_rate=) # training
    train__acc = model.evaluation(train_logits, train_label_batch) # 验证正确率

    summary_op = tf.summary.merge_all() # 定义合并变量操作,一次性生成所有摘要数据
    sess = tf.Session() # 初始化会话
    train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph) # TensorBoard的记录
    saver = tf.train.Saver() # 储存模型

    sess.run(tf.global_variables_initializer()) # 所有变量初始化
    coord = tf.train.Coordinator() # 多线程
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    csvfile = open('csv.csv', 'w', newline='')
    writer = csv.writer(csvfile)
    writer.writerow(['name','label'])

    try:
        for step in np.arange(MAX_STEP):
            if coord.should_stop():
                break
            _, tra_loss, tra_acc = sess.run([train_op, train_loss, train__acc])

            if step % 50 == 0:
                print('Step %d, train loss = %.2f, train accuracy = %.2f%%' %(step, tra_loss, tra_acc*100.0))
                summary_str = sess.run(summary_op)
                train_writer.add_summary(summary_str, step)

            if step % 2000 == 0 or (step + 1) == MAX_STEP:
                checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')
                saver.save(sess, checkpoint_path, global_step=step)

    except tf.errors.OutOfRangeError:
        print('Done training -- epoch limit reached')
    finally:
        coord.request_stop()

    coord.join(threads)
    sess.close()
Exemple #23
0
def run_training():
    train_dir = "./data/TRAIN/"
    logs_train_dir = "./logs/"

    train, train_label = input_data.get_files(train_dir)

    train_batch, train_label_batch = input_data.get_batch(train,train_label,IMG_W,IMG_H,BATCH_SIZE,CAPACITY)


    train_logits = model.inference(train_batch,BATCH_SIZE,N_CLASSES)
    train_loss = model.losses(train_logits,train_label_batch)
    train_op = model.trainning(train_loss, learning_rate)
    train_acc = model.evaluation(train_logits, train_label_batch)


    summary_op = tf.summary.merge_all()
    sess = tf.Session()

    train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph)
    saver = tf.train.Saver()

    sess.run(tf.global_variables_initializer())
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    try:
        for step in np.arange(MAX_STEP):
            if coord.should_stop():
                break
            _, tra_loss, tra_acc= sess.run([train_op, train_loss, train_acc])

            if step % 100 == 0:
                print('Step:', step, 'train loss:', tra_loss, 'train accuracy:', tra_acc)
                summary_str = sess.run(summary_op)
                train_writer.add_summary(summary_str, step)

            if tra_acc > 0.95 and step>6000:

                checkpoint_path = os.path.join(logs_train_dir, "model")
                saver.save(sess, checkpoint_path, global_step=step)
                print("train success!")
                print('Step:', step, 'train loss:', tra_loss, 'train accuracy:', tra_acc)
                coord.request_stop()
    except tf.errors.OutOfRangeError:
        print("Done training -- epoch limit reached.")
    finally:
        coord.request_stop()

    coord.join(threads)
    sess.close()
def run_training():
    DIR_PRE = os.getcwd() + '/'
    train_dir = DIR_PRE + 'data/train/'
    logs_train_dir = DIR_PRE + 'logs/train/'
    os.makedirs(train_dir, exist_ok=True)
    os.makedirs(logs_train_dir, exist_ok=True)

    # 获取所有图片文件列表和对应的标签列表
    train, train_label = input_data.get_files(train_dir)

    #
    train_batch, train_label_batch = input_data.get_batch(
        train, train_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)
    train_logits = model.inference(train_batch, BATCH_SIZE, N_CLASSES)
    train_loss = model.losses(train_logits, train_label_batch)
    train_op = model.trainning(train_loss, learning_rate)
    train__acc = model.evaluation(train_logits, train_label_batch)

    summary_op = tf.summary.merge_all()
    sess = tf.Session()
    train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph)
    saver = tf.train.Saver()

    sess.run(tf.global_variables_initializer())
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    try:
        for step in np.arange(MAX_STEP):
            if coord.should_stop():
                break
            _, tra_loss, tra_acc = sess.run([train_op, train_loss, train__acc])

            if step % 50 == 0:
                print('Step %d, train loss = %.2f, train accuracy = %.2f%%' %
                      (step, tra_loss, tra_acc * 100.0))
                summary_str = sess.run(summary_op)
                train_writer.add_summary(summary_str, step)

            if step % 2000 == 0 or (step + 1) == MAX_STEP:
                checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')
                saver.save(sess, checkpoint_path, global_step=step)

    except tf.errors.OutOfRangeError:
        print('Done training -- epoch limit reached')
    finally:
        coord.request_stop()

    coord.join(threads)
    sess.close()
def run_training():

    # you need to change the directories to yours.
    # train_dir = '/home/kevin/tensorflow/hams_vs_hots/data/train/'
    train_dir = 'D:/workspace/uploadPicJudge3Class/train/'
    # logs_train_dir = '/home/kevin/tensorflow/hams_vs_hots/logs/train/'
    logs_train_dir = 'D:/workspace/uploadPicJudge3Class/logs/'

    train, train_label = input_data.get_files(train_dir)

    train_batch, train_label_batch = input_data.get_batch(
        train, train_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)
    train_logits = model.inference(train_batch, BATCH_SIZE, N_CLASSES)
    train_loss = model.losses(train_logits, train_label_batch)
    train_op = model.trainning(train_loss, learning_rate)
    train__acc = model.evaluation(train_logits, train_label_batch)

    summary_op = tf.summary.merge_all()
    sess = tf.Session()
    train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph)
    saver = tf.train.Saver()

    sess.run(tf.global_variables_initializer())
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    try:
        for step in np.arange(MAX_STEP):
            if coord.should_stop():
                break
            _, tra_loss, tra_acc = sess.run([train_op, train_loss, train__acc])

            if step % 10 == 0:
                print('Step %d, train loss = %.2f, train accuracy = %.2f%%' %
                      (step, tra_loss, tra_acc * 100.0) + '  ' +
                      datetime.datetime.now().strftime('%Y-%m-%d %H_%M_%S'))
                summary_str = sess.run(summary_op)
                train_writer.add_summary(summary_str, step)

            if step % 100 == 0 or (step + 1) == MAX_STEP:
                checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')
                saver.save(sess, checkpoint_path, global_step=step)

    except tf.errors.OutOfRangeError:
        print('Done training -- epoch limit reached')
    finally:
        coord.request_stop()

    coord.join(threads)
    sess.close()
def run_training():
    
    # you need to change the directories to yours.
    train_dir = '/home/kevin/tensorflow/cats_vs_dogs/data/train/'
    logs_train_dir = '/home/kevin/tensorflow/cats_vs_dogs/logs/train/'
    
    train, train_label = input_data.get_files(train_dir)
    
    train_batch, train_label_batch = input_data.get_batch(train,
                                                          train_label,
                                                          IMG_W,
                                                          IMG_H,
                                                          BATCH_SIZE, 
                                                          CAPACITY)      
    train_logits = model.inference(train_batch, BATCH_SIZE, N_CLASSES)
    train_loss = model.losses(train_logits, train_label_batch)        
    train_op = model.trainning(train_loss, learning_rate)
    train__acc = model.evaluation(train_logits, train_label_batch)
       
    summary_op = tf.summary.merge_all()
    sess = tf.Session()
    train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph)
    saver = tf.train.Saver()
    
    sess.run(tf.global_variables_initializer())
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)
    
    try:
        for step in np.arange(MAX_STEP):
            if coord.should_stop():
                    break
            _, tra_loss, tra_acc = sess.run([train_op, train_loss, train__acc])
               
            if step % 50 == 0:
                print('Step %d, train loss = %.2f, train accuracy = %.2f%%' %(step, tra_loss, tra_acc*100.0))
                summary_str = sess.run(summary_op)
                train_writer.add_summary(summary_str, step)
            
            if step % 2000 == 0 or (step + 1) == MAX_STEP:
                checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')
                saver.save(sess, checkpoint_path, global_step=step)
                
    except tf.errors.OutOfRangeError:
        print('Done training -- epoch limit reached')
    finally:
        coord.request_stop()
        
    coord.join(threads)
    sess.close()
Exemple #27
0
def evaluate_one_image():

    #测试原始图片
    train_dir = "./data/ORIGIN_TEST/"
    train, train_label = input_data.get_files(train_dir)
    image_array, image_dir = get_one_origin_image(train)

    with tf.Graph().as_default():
        BATCH_SIZE = 1
        image = tf.cast(image_array, tf.float32)
        image = tf.reshape(image, [1, IMG_H, IMG_W, 3])
        logit = model.inference(image, BATCH_SIZE, N_CLASSES)
        logit = tf.nn.softmax(logit)

        x = tf.placeholder(tf.float32, shape=[IMG_H, IMG_W, 3])

        logs_train_dir = "./logs/"
        saver = tf.train.Saver()

        with tf.Session() as sess:
            print("Reading checkpoints...")
            ckpt = tf.train.get_checkpoint_state(logs_train_dir)
            if ckpt and ckpt.model_checkpoint_path:
                global_step = ckpt.model_checkpoint_path.split("/")[-1].split("-")[-1]
                saver.restore(sess, ckpt.model_checkpoint_path)
                print("Loading success, global_step is %s" % global_step)
            else:
                print("No checkpoint file found")

            print('The test picture is :', image_dir)
            prediction = sess.run(logit, feed_dict={x: image_array})
            print(prediction)
            max_index = np.argmax(prediction)
            if max_index == 0:
                # print("This is a eosinophil cell with possibility %.6f" % prediction[:, 0])
                print("This is a eosinophil cell")
            elif max_index==1:
                # print("This is a lymphocyte cell with possibility %.6f" % prediction[:, 1])
                print("This is a lymphocyte cell")
            elif max_index==2:
                # print("This is a monocyte cell with possibility %.6f" % prediction[:, 1])
                print("This is a monocyte cell")

            elif max_index==3:
                # print("This is a neutrophil cell with possibility %.6f" % prediction[:, 1])
                print("This is a neutrophil cell")
            else:
                print('can not recognize the cell')
        cv2.waitKey(0)
        cv2.destroyAllWindows()
Exemple #28
0
def evaluate_one_image():
    '''Test one image against the saved models and parameters
    '''

    # you need to change the directories to yours.
    train_dir = './data/train/train/'
    train, train_label = input_data.get_files(train_dir)
    image_array = get_one_image(train)  # 任意选择一张图片

    with tf.Graph().as_default():
        BATCH_SIZE = 1
        N_CLASSES = 2

        image = tf.cast(image_array, tf.float32)
        image = tf.image.per_image_standardization(image)  # 图片标准化
        image = tf.reshape(image, [1, 208, 208, 3])
        logit = model.inference(image, BATCH_SIZE, N_CLASSES)

        logit = tf.nn.softmax(logit)  # 因为最后一层没有激活函数,所在此处应该加上激活函数

        x = tf.placeholder(tf.float32, shape=[208, 208,
                                              3])  #利用placeholder方式喂给数据

        # you need to change the directories to yours.
        logs_train_dir = './logs'

        saver = tf.train.Saver()

        with tf.Session() as sess:

            print("Reading checkpoints...")
            ckpt = tf.train.get_checkpoint_state(logs_train_dir)  # 读取模型结构和参数
            if ckpt and ckpt.model_checkpoint_path:
                global_step = ckpt.model_checkpoint_path.split('/')[-1].split(
                    '-')[-1]
                saver.restore(sess, ckpt.model_checkpoint_path)
                print('Loading success, global_step is %s' % global_step)
            else:
                print('No checkpoint file found')

            # 模型已经准备就绪,准备预测图片的类型
            prediction = sess.run(logit, feed_dict={x: image_array})
            max_index = np.argmax(prediction)  # 得到两个概率,取最大的概率
            if max_index == 0:
                print('This is a cat with possibility %.6f' %
                      prediction[:, 0])  # 猫
            else:
                print('This is a dog with possibility %.6f' %
                      prediction[:, 1])  # 狗
def run_training():
    train_dir = 'C://Users/Sizhe/Desktop/CatsvsDogs/data/train/'
    logs_train_dir = 'C://Users/Sizhe/Desktop/CatsvsDogs/data/logs/train/'

    train, train_label = input_data.get_files(train_dir)
    train_batch, train_label_batch = input_data.get_batch(train,
                                               train_label,
                                               image_width,
                                               image_height,
                                               batch_size,
                                               capacity)
    train_logits = model.inference(train_batch, batch_size, n_class)
    train_loss = model.losses(train_logits, train_label_batch)
    train_op = model.training(train_loss, learning_rate)
    train_acc = model.evaluation(train_logits, train_label_batch)

    summary_op = tf.summary.merge_all()
    sess = tf.Session()
    train_writer = tf.summary.FileWriter(logs_train_dir,sess.graph)
    saver = tf.train.Saver()

    sess.run(tf.global_variables_initializer())
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess = sess, coord = coord)

    try:
        for step in np.arange(max_step):
            if coord.should_stop():
                break
            _, tra_loss, tra_acc = sess.run([train_op, train_loss, train_acc])

### step%50 when training            
            if step%50 == 0:
                print ('Step %d, train loss = %.2f, train accuracy = %.2f%%' %(step, tra_loss, tra_acc*100.00))
                summary_str = sess.run(summary_op)
                train_writer.add_summary(summary_str, step)

            if step%2000 == 0 or step == max_step-1:
                checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')
                saver.save(sess, checkpoint_path, global_step= step)

    except tf.errors.OutOfRangeError:
        print ('Training finished -- epoch limit reached')
    finally:
        coord.request_stop()

    coord.join(threads)
    sess.close()
def evaluate_one_image():
    '''Test one image against the saved models and parameters
    '''

    # you need to change the directories to yours.
    train_dir = '/userDocs/user000/workspaces/2018-06-30-tensorflowCNN/Data/catVsDog/train/'
    train, train_label = input_data.get_files(train_dir)
    image_array = get_one_image(train)

    with tf.Graph().as_default():
        BATCH_SIZE = 1
        N_CLASSES = 2

        image = tf.cast(image_array, tf.float32)
        image = tf.image.per_image_standardization(image)
        image = tf.reshape(image, [1, 208, 208, 3])
        logit = model.inference(image, BATCH_SIZE, N_CLASSES)

        logit = tf.nn.softmax(logit)

        x = tf.placeholder(tf.float32, shape=[208, 208, 3])

        # you need to change the directories to yours.
        logs_train_dir = '/userDocs/user000/workspaces/2018-06-30-tensorflowCNN/Data/catVsDog/trainedModels/'

        saver = tf.train.Saver()

        with tf.Session() as sess:

            print("Reading checkpoints...")
            ckpt = tf.train.get_checkpoint_state(logs_train_dir)
            if ckpt and ckpt.model_checkpoint_path:
                global_step = ckpt.model_checkpoint_path.split('/')[-1].split(
                    '-')[-1]
                saver.restore(sess, ckpt.model_checkpoint_path)
                print('Loading success, global_step is %s' % global_step)
            else:
                print('No checkpoint file found')

            prediction = sess.run(logit, feed_dict={x: image_array})
            max_index = np.argmax(prediction)
            if max_index == 0:
                print('This is a cat with possibility %.6f' % prediction[:, 0])
            else:
                print('This is a dog with possibility %.6f' % prediction[:, 1])
            plt.imshow(image_array)
            plt.show()
Exemple #31
0
def run_training():
    print 'let us begin....'
    train_dir = '../data/train/'
    logs_train_dir = './train/'

    train, train_label = input_data.get_files(train_dir)
    train_batch, train_label_batch = input_data.get_batch(
        train, train_label, IMG_H, IMG_W, BATCH_SIZE, CAPACITY)
    train_logits = model.inference(train_batch, BATCH_SIZE, N_CLASSES)
    train_loss = model.losses(train_logits, train_label_batch)
    train_op = model.trainning(train_loss, lr)
    train_acc = model.evaluation(train_logits, train_label_batch)

    summary_op = tf.summary.merge_all()  #????
    sess = tf.Session()

    train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph)
    saver = tf.train.Saver()

    sess.run(tf.global_variables_initializer())
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    try:
        for step in np.arange(MAX_STEP):
            if coord.should_stop():
                print 'coord stop!'
                break
            _, tra_loss, tra_acc = sess.run([train_op, train_loss, train_acc])

            if step % 50 == 0:
                print 'Step: %d, train_loss = %.2f, train_accuracy = %.2f\n' % (
                    step, tra_loss, tra_acc * 100.0)
                summary_str = sess.run(summary_op)
                train_writer.add_summary(summary_str, step)

            if step % 2500 == 0 or (step + 1) == MAX_STEP:
                checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')
                saver.save(sess, checkpoint_path, global_step=step)

    except tf.errors.OutOfRangeError:
        print('Done training -- epoch limit reached')
    finally:
        coord.request_stop()

    coord.join(threads)
    sess.close()
Exemple #32
0
def run_training():
    
    # you need to change the directories to yours.
	s_train_dir = '/home/hrz/projects/tensorflow/emotion/ck+/CK+YuanTu'
	T_train_dir = '/home/hrz/projects/tensorflow/emotion/ck+/CK+X_mid'
	logs_train_dir = '/home/hrz/projects/tensorflow/emotion/ck+'
	s_train, s_train_label = input_data.get_files(s_train_dir)
	s_train_batch, s_train_label_batch = input_data.get_batch(s_train,
                                                          s_train_label,
                                                          IMG_W,
                                                          IMG_H,
                                                          BATCH_SIZE, 
                                                          CAPACITY)   
	T_train, T_train_label = input_data.get_files(T_train_dir)
    
	T_train_batch, T_train_label_batch = input_data.get_batch(T_train,
                                                          T_train_label,
                                                          IMG_W,
                                                          IMG_H,
                                                          BATCH_SIZE, 
                                                          CAPACITY) 

	train_logits = model.inference(s_train_batch,T_train_batch, BATCH_SIZE, N_CLASSES)
	train_loss = model.losses(train_logits, s_train_label_batch)        
	train_op = model.trainning(train_loss, learning_rate)
	train__acc = model.evaluation(train_logits, s_train_label_batch)
       
	summary_op = tf.summary.merge_all()  #汇总操作
	sess = tf.Session()   #定义sess
	train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph) #
	saver = tf.train.Saver()    #保存操作
    
	sess.run(tf.global_variables_initializer())#初始化所有变量
	coord = tf.train.Coordinator() #设置多线程协调器
	threads = tf.train.start_queue_runners(sess=sess, coord=coord) #开始Queue Runners(队列运行器)
    
    #开始训练过程
	try:
		for step in np.arange(MAX_STEP):
			if coord.should_stop():
					break
			_, tra_loss, tra_acc = sess.run([train_op, train_loss, train__acc]) 
               
			if step % 50 == 0:
				print('Step %d, train loss = %.2f, train accuracy = %.2f%%' %(step, tra_loss, tra_acc*100.0))
				#运行汇总操作,写入汇总
				summary_str = sess.run(summary_op)
				train_writer.add_summary(summary_str, step)
            
			if step % 800 == 0 or (step + 1) == MAX_STEP:
				#保存当前模型和权重到 logs_train_dir,global_step为当前迭代次数
				checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')
				saver.save(sess, checkpoint_path, global_step=step)
                
	except tf.errors.OutOfRangeError:
		print('Done training -- epoch limit reached')
	finally:
		coord.request_stop()
        
	coord.join(threads)
	sess.close()
Exemple #33
0
import input_data
import model
import sys

N_CLASSES = 6
IMG_W = 256  # resize the image, if the input image is too large, training will be very slow.
IMG_H = 256
BATCH_SIZE = 16
CAPACITY = 100000
MAX_STEP = 10000 # with current parameters, it is suggested to use MAX_STEP>10k
learning_rate = 0.0001 # with current parameters, it is suggested to use learning rate<0.0001

s_train_dir = '/home/hrz/projects/tensorflow/emotion/ck+/CK+YuanTu'
T_train_dir = '/home/hrz/projects/tensorflow/emotion/ck+/CK+X_mid'
logs_train_dir = '/home/hrz/projects/tensorflow/emotion/ck+'
s_train, s_train_label = input_data.get_files(s_train_dir)
#print(s_train)
s_train_batch, s_train_label_batch = input_data.get_batch(s_train,
                                                          s_train_label,
                                                          IMG_W,
                                                          IMG_H,
                                                          BATCH_SIZE, 
                                                          CAPACITY) 
#print(s_train_label_batch)
T_train, T_train_label = input_data.get_files(T_train_dir)
    
T_train_batch, T_train_label_batch = input_data.get_batch(T_train,
                                                          T_train_label,
                                                          IMG_W,
                                                          IMG_H,
                                                          BATCH_SIZE, 
def training():

    train, train_label, val, val_label = input_data.get_files(train_dir, RATIO)
    train_batch, train_label_batch = input_data.get_batch(train,
                                                  train_label,
                                                  IMG_W,
                                                  IMG_H,
                                                  BATCH_SIZE,
                                                  CAPACITY)
    val_batch, val_label_batch = input_data.get_batch(val,
                                                  val_label,
                                                  IMG_W,
                                                  IMG_H,
                                                  BATCH_SIZE,
                                                  CAPACITY)

    logits = model.inference(train_batch, BATCH_SIZE, N_CLASSES)
    loss = model.losses(logits, train_label_batch)
    train_op = model.trainning(loss, learning_rate)
    acc = model.evaluation(logits, train_label_batch)

    x = tf.placeholder(tf.float32, shape=[BATCH_SIZE, IMG_W, IMG_H, 3])
    y_ = tf.placeholder(tf.int16, shape=[BATCH_SIZE])


    with tf.Session() as sess:
        saver = tf.train.Saver()
        sess.run(tf.global_variables_initializer())
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess= sess, coord=coord)

        summary_op = tf.summary.merge_all()
        train_writer = tf.summary.FileWriter(train_logs_dir, sess.graph)
        val_writer = tf.summary.FileWriter(val_logs_dir, sess.graph)

        try:
            for step in np.arange(MAX_STEP):
                if coord.should_stop():
                        break
                tra_images,tra_labels = sess.run([train_batch, train_label_batch])
                _, tra_loss, tra_acc = sess.run([train_op, loss, acc],
                                                feed_dict={x:tra_images, y_:tra_labels})
                if step % 50 == 0:
                    print('Step %d, train loss = %.2f, train accuracy = %.2f%%' %(step, tra_loss, tra_acc*100.0))
                    summary_str = sess.run(summary_op)
                    train_writer.add_summary(summary_str, step)

                if step % 200 == 0 or (step + 1) == MAX_STEP:
                    val_images, val_labels = sess.run([val_batch, val_label_batch])
                    val_loss, val_acc = sess.run([loss, acc],
                                                 feed_dict={x:val_images, y_:val_labels})
                    print('**  Step %d, val loss = %.2f, val accuracy = %.2f%%  **' %(step, val_loss, val_acc*100.0))
                    summary_str = sess.run(summary_op)
                    val_writer.add_summary(summary_str, step)

                if step % 2000 == 0 or (step + 1) == MAX_STEP:
                    checkpoint_path = os.path.join(train_logs_dir, 'model.ckpt')
                    saver.save(sess, checkpoint_path, global_step=step)

        except tf.errors.OutOfRangeError:
            print('Done training -- epoch limit reached')
        finally:
            coord.request_stop()
        coord.join(threads)