Exemple #1
0
def get_inputs(dataset_dir, dataset_name, split_name, batch_size, image_size,
               is_training):
    """Loads the given dataset and split."""
    del image_size  # Unused
    with tf.variable_scope('data_loading_%s/%s' % (dataset_name, split_name)):
        common_queue_min = 50
        common_queue_capacity = 256
        num_readers = 4

        inputs = input_generator.get(
            dataset_dir,
            dataset_name,
            split_name,
            shuffle=is_training,
            num_readers=num_readers,
            common_queue_min=common_queue_min,
            common_queue_capacity=common_queue_capacity)

        return _get_data_from_provider(inputs, batch_size, split_name)
Exemple #2
0
def get_inputs(dataset_dir, dataset_name, split_name, batch_size, image_size,
               is_training):
  """Loads the given dataset and split."""
  del image_size  # Unused
  with tf.variable_scope('data_loading_%s/%s' % (dataset_name, split_name)):
    common_queue_min = 50
    common_queue_capacity = 256
    num_readers = 4

    inputs = input_generator.get(
        dataset_dir,
        dataset_name,
        split_name,
        shuffle=is_training,
        num_readers=num_readers,
        common_queue_min=common_queue_min,
        common_queue_capacity=common_queue_capacity)

    return _get_data_from_provider(inputs, batch_size, split_name)
Exemple #3
0
    def get_inputs(self,
                   dataset_dir,
                   dataset_name,
                   split_name,
                   batch_size,
                   image_size,
                   vox_size,
                   is_training=True):
        """Loads data for a specified dataset and split."""
        del image_size, vox_size
        with tf.variable_scope('data_loading_%s/%s' %
                               (dataset_name, split_name)):
            common_queue_min = 64
            common_queue_capacity = 256
            num_readers = 4

            inputs = input_generator.get(
                dataset_dir,
                dataset_name,
                split_name,
                shuffle=is_training,
                num_readers=num_readers,
                common_queue_min=common_queue_min,
                common_queue_capacity=common_queue_capacity)

            images, voxels = tf.train.batch([inputs['image'], inputs['voxel']],
                                            batch_size=batch_size,
                                            num_threads=8,
                                            capacity=8 * batch_size,
                                            name='batching_queues/%s/%s' %
                                            (dataset_name, split_name))

            outputs = dict()
            outputs['images'] = images
            outputs['voxels'] = voxels
            outputs['num_samples'] = inputs['num_samples']

        return outputs
  def get_inputs(self,
                 dataset_dir,
                 dataset_name,
                 split_name,
                 batch_size,
                 image_size,
                 vox_size,
                 is_training=True):
    """Loads data for a specified dataset and split."""
    del image_size, vox_size
    with tf.variable_scope('data_loading_%s/%s' % (dataset_name, split_name)):
      common_queue_min = 64
      common_queue_capacity = 256
      num_readers = 4

      inputs = input_generator.get(
          dataset_dir,
          dataset_name,
          split_name,
          shuffle=is_training,
          num_readers=num_readers,
          common_queue_min=common_queue_min,
          common_queue_capacity=common_queue_capacity)

      images, voxels = tf.train.batch(
          [inputs['image'], inputs['voxel']],
          batch_size=batch_size,
          num_threads=8,
          capacity=8 * batch_size,
          name='batching_queues/%s/%s' % (dataset_name, split_name))

      outputs = dict()
      outputs['images'] = images
      outputs['voxels'] = voxels
      outputs['num_samples'] = inputs['num_samples']

    return outputs
Exemple #5
0
def main(unused_argv):
    tf.logging.set_verbosity(tf.logging.INFO)
    # Get dataset-dependent information.
    dataset = segmentation_dataset.get_dataset(FLAGS.dataset,
                                               FLAGS.eval_split,
                                               dataset_dir=FLAGS.dataset_dir)

    tf.gfile.MakeDirs(FLAGS.eval_logdir)
    tf.logging.info('Evaluating on %s set', FLAGS.eval_split)

    with tf.Graph().as_default():
        samples = input_generator.get(dataset,
                                      FLAGS.eval_crop_size,
                                      FLAGS.eval_batch_size,
                                      min_resize_value=FLAGS.min_resize_value,
                                      max_resize_value=FLAGS.max_resize_value,
                                      resize_factor=FLAGS.resize_factor,
                                      dataset_split=FLAGS.eval_split,
                                      is_training=False,
                                      model_variant=FLAGS.model_variant)

        model_options = common.ModelOptions(
            outputs_to_num_classes={common.OUTPUT_TYPE: dataset.num_classes},
            crop_size=FLAGS.eval_crop_size,
            atrous_rates=FLAGS.atrous_rates,
            output_stride=FLAGS.output_stride)

        if tuple(FLAGS.eval_scales) == (1.0, ):
            tf.logging.info('Performing single-scale test.')
            predictions = model.predict_labels(
                samples[common.IMAGE],
                model_options,
                image_pyramid=FLAGS.image_pyramid)
        else:
            tf.logging.info('Performing multi-scale test.')
            predictions = model.predict_labels_multi_scale(
                samples[common.IMAGE],
                model_options=model_options,
                eval_scales=FLAGS.eval_scales,
                add_flipped_images=FLAGS.add_flipped_images)
        predictions = predictions[common.OUTPUT_TYPE]
        predictions = tf.reshape(predictions, shape=[-1])
        labels = tf.reshape(samples[common.LABEL], shape=[-1])
        weights = tf.to_float(tf.not_equal(labels, dataset.ignore_label))

        # Set ignore_label regions to label 0, because metrics.mean_iou requires
        # range of labels = [0, dataset.num_classes). Note the ignore_label regions
        # are not evaluated since the corresponding regions contain weights = 0.
        labels = tf.where(tf.equal(labels, dataset.ignore_label),
                          tf.zeros_like(labels), labels)

        predictions_tag = 'miou'
        for eval_scale in FLAGS.eval_scales:
            predictions_tag += '_' + str(eval_scale)
        if FLAGS.add_flipped_images:
            predictions_tag += '_flipped'

        # Define the evaluation metric.
        metric_map = {}
        metric_map[predictions_tag] = tf.metrics.mean_iou(predictions,
                                                          labels,
                                                          dataset.num_classes,
                                                          weights=weights)

        metrics_to_values, metrics_to_updates = (
            tf.contrib.metrics.aggregate_metric_map(metric_map))

        for metric_name, metric_value in six.iteritems(metrics_to_values):
            slim.summaries.add_scalar_summary(metric_value,
                                              metric_name,
                                              print_summary=True)

        num_batches = int(
            math.ceil(dataset.num_samples / float(FLAGS.eval_batch_size)))

        tf.logging.info('Eval num images %d', dataset.num_samples)
        tf.logging.info('Eval batch size %d and num batch %d',
                        FLAGS.eval_batch_size, num_batches)

        num_eval_iters = None
        if FLAGS.max_number_of_evaluations > 0:
            num_eval_iters = FLAGS.max_number_of_evaluations
        slim.evaluation.evaluation_loop(
            master=FLAGS.master,
            checkpoint_dir=FLAGS.checkpoint_dir,
            logdir=FLAGS.eval_logdir,
            num_evals=num_batches,
            eval_op=list(metrics_to_updates.values()),
            max_number_of_evaluations=num_eval_iters,
            eval_interval_secs=FLAGS.eval_interval_secs)
Exemple #6
0
def main(unused_argv):
  tf.logging.set_verbosity(tf.logging.INFO)
  # Get dataset-dependent information.
  dataset = segmentation_dataset.get_dataset(
      FLAGS.dataset, FLAGS.vis_split, dataset_dir=FLAGS.dataset_dir)
  train_id_to_eval_id = None
  if dataset.name == segmentation_dataset.get_cityscapes_dataset_name():
    tf.logging.info('Cityscapes requires converting train_id to eval_id.')
    train_id_to_eval_id = _CITYSCAPES_TRAIN_ID_TO_EVAL_ID

  # Prepare for visualization.
  tf.gfile.MakeDirs(FLAGS.vis_logdir)
  save_dir = os.path.join(FLAGS.vis_logdir, _SEMANTIC_PREDICTION_SAVE_FOLDER)
  tf.gfile.MakeDirs(save_dir)
  raw_save_dir = os.path.join(
      FLAGS.vis_logdir, _RAW_SEMANTIC_PREDICTION_SAVE_FOLDER)
  tf.gfile.MakeDirs(raw_save_dir)

  tf.logging.info('Visualizing on %s set', FLAGS.vis_split)

  g = tf.Graph()
  with g.as_default():
    samples = input_generator.get(dataset,
                                  FLAGS.vis_crop_size,
                                  FLAGS.vis_batch_size,
                                  min_resize_value=FLAGS.min_resize_value,
                                  max_resize_value=FLAGS.max_resize_value,
                                  resize_factor=FLAGS.resize_factor,
                                  dataset_split=FLAGS.vis_split,
                                  is_training=False,
                                  model_variant=FLAGS.model_variant)

    model_options = common.ModelOptions(
        outputs_to_num_classes={common.OUTPUT_TYPE: dataset.num_classes},
        crop_size=FLAGS.vis_crop_size,
        atrous_rates=FLAGS.atrous_rates,
        output_stride=FLAGS.output_stride)

    if tuple(FLAGS.eval_scales) == (1.0,):
      tf.logging.info('Performing single-scale test.')
      predictions = model.predict_labels(
          samples[common.IMAGE],
          model_options=model_options,
          image_pyramid=FLAGS.image_pyramid)
    else:
      tf.logging.info('Performing multi-scale test.')
      predictions = model.predict_labels_multi_scale(
          samples[common.IMAGE],
          model_options=model_options,
          eval_scales=FLAGS.eval_scales,
          add_flipped_images=FLAGS.add_flipped_images)
    predictions = predictions[common.OUTPUT_TYPE]

    if FLAGS.min_resize_value and FLAGS.max_resize_value:
      # Only support batch_size = 1, since we assume the dimensions of original
      # image after tf.squeeze is [height, width, 3].
      assert FLAGS.vis_batch_size == 1

      # Reverse the resizing and padding operations performed in preprocessing.
      # First, we slice the valid regions (i.e., remove padded region) and then
      # we reisze the predictions back.
      original_image = tf.squeeze(samples[common.ORIGINAL_IMAGE])
      original_image_shape = tf.shape(original_image)
      predictions = tf.slice(
          predictions,
          [0, 0, 0],
          [1, original_image_shape[0], original_image_shape[1]])
      resized_shape = tf.to_int32([tf.squeeze(samples[common.HEIGHT]),
                                   tf.squeeze(samples[common.WIDTH])])
      predictions = tf.squeeze(
          tf.image.resize_images(tf.expand_dims(predictions, 3),
                                 resized_shape,
                                 method=tf.image.ResizeMethod.NEAREST_NEIGHBOR,
                                 align_corners=True), 3)

    tf.train.get_or_create_global_step()
    saver = tf.train.Saver(slim.get_variables_to_restore())
    sv = tf.train.Supervisor(graph=g,
                             logdir=FLAGS.vis_logdir,
                             init_op=tf.global_variables_initializer(),
                             summary_op=None,
                             summary_writer=None,
                             global_step=None,
                             saver=saver)
    num_batches = int(math.ceil(
        dataset.num_samples / float(FLAGS.vis_batch_size)))
    last_checkpoint = None

    # Loop to visualize the results when new checkpoint is created.
    num_iters = 0
    while (FLAGS.max_number_of_iterations <= 0 or
           num_iters < FLAGS.max_number_of_iterations):
      num_iters += 1
      last_checkpoint = slim.evaluation.wait_for_new_checkpoint(
           FLAGS.checkpoint_dir, last_checkpoint)
      start = time.time()
      tf.logging.info(
          'Starting visualization at ' + time.strftime('%Y-%m-%d-%H:%M:%S',
                                                       time.gmtime()))
      tf.logging.info('Visualizing with model %s', last_checkpoint)

      with sv.managed_session(FLAGS.master,
                              start_standard_services=False) as sess:
        sv.start_queue_runners(sess)
        sv.saver.restore(sess, last_checkpoint)

        image_id_offset = 0
        for batch in range(num_batches):
          tf.logging.info('Visualizing batch %d / %d', batch + 1, num_batches)
          _process_batch(sess=sess,
                         original_images=samples[common.ORIGINAL_IMAGE],
                         semantic_predictions=predictions,
                         image_names=samples[common.IMAGE_NAME],
                         image_heights=samples[common.HEIGHT],
                         image_widths=samples[common.WIDTH],
                         image_id_offset=image_id_offset,
                         save_dir=save_dir,
                         raw_save_dir=raw_save_dir,
                         train_id_to_eval_id=train_id_to_eval_id)
          image_id_offset += FLAGS.vis_batch_size

      tf.logging.info(
          'Finished visualization at ' + time.strftime('%Y-%m-%d-%H:%M:%S',
                                                       time.gmtime()))
    return train_op


tf.logging.set_verbosity(tf.logging.INFO)

print("Setting up dataset reader")
with tf.device('/cpu:0'):
    data_train = segmentation_dataset.get_dataset(
        dataset.name, "trainaug",
        dataset.data_dir)  #train for ADE20K, trainaug for PASCAL
    data_val = segmentation_dataset.get_dataset(dataset.name, "val",
                                                dataset.data_dir)
    batchTrain = input_generator.get(
        data_train,
        args.crop_size,
        args.batchSize,  #is_training=True,
        dataset_split="training")
    batchTest = input_generator.get(
        data_val,
        args.crop_size,
        args.testBatchSize,  #is_training=False,
        dataset_split="validation")
    train_images = batchTrain['image']
    print(train_images)
    train_annotations = batchTrain['label']
    print(train_annotations)
    valid_images = batchTest['image']
    valid_annotations = batchTest['label']
    valid_names = batchTest['image_name']
    valid_height = batchTest['height']
Exemple #8
0
def main(unused_argv):
    tf.logging.set_verbosity(tf.logging.INFO)
    # Set up deployment (i.e., multi-GPUs and/or multi-replicas).
    config = model_deploy.DeploymentConfig(num_clones=FLAGS.num_clones,
                                           clone_on_cpu=FLAGS.clone_on_cpu,
                                           replica_id=FLAGS.task,
                                           num_replicas=FLAGS.num_replicas,
                                           num_ps_tasks=FLAGS.num_ps_tasks)

    # Split the batch across GPUs.
    assert FLAGS.train_batch_size % config.num_clones == 0, (
        'Training batch size not divisble by number of clones (GPUs).')

    clone_batch_size = FLAGS.train_batch_size // config.num_clones

    # Get dataset-dependent information.
    dataset = segmentation_dataset.get_dataset(FLAGS.dataset,
                                               FLAGS.train_split,
                                               dataset_dir=FLAGS.dataset_dir)

    tf.gfile.MakeDirs(FLAGS.train_logdir)
    tf.logging.info('Training on %s set', FLAGS.train_split)

    with tf.Graph().as_default() as graph:
        with tf.device(config.inputs_device()):
            FLAGS.model_variant = "xception_65"
            samples = input_generator.get(
                dataset,
                FLAGS.train_crop_size,
                clone_batch_size,
                min_resize_value=FLAGS.min_resize_value,
                max_resize_value=FLAGS.max_resize_value,
                resize_factor=FLAGS.resize_factor,
                min_scale_factor=FLAGS.min_scale_factor,
                max_scale_factor=FLAGS.max_scale_factor,
                scale_factor_step_size=FLAGS.scale_factor_step_size,
                dataset_split=FLAGS.train_split,
                is_training=True,
                model_variant=FLAGS.model_variant
                # model_variant="xception_65"
            )
            print('???????????????????????????????????????????????????')
            print(FLAGS.model_variant)
            print('???????????????????????????????????????????????????')
            inputs_queue = prefetch_queue.prefetch_queue(samples,
                                                         capacity=128 *
                                                         config.num_clones)

        # Create the global step on the device storing the variables.
        with tf.device(config.variables_device()):
            global_step = tf.train.get_or_create_global_step()

            # Define the model and create clones.
            model_fn = _build_deeplab
            model_args = (inputs_queue, {
                common.OUTPUT_TYPE: dataset.num_classes
            }, dataset.ignore_label)
            clones = model_deploy.create_clones(config,
                                                model_fn,
                                                args=model_args)

            # Gather update_ops from the first clone. These contain, for example,
            # the updates for the batch_norm variables created by model_fn.
            first_clone_scope = config.clone_scope(0)
            update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS,
                                           first_clone_scope)

        # Gather initial summaries.
        summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))

        # Add summaries for model variables.
        for model_var in slim.get_model_variables():
            summaries.add(tf.summary.histogram(model_var.op.name, model_var))

        # Add summaries for images, labels, semantic predictions
        if FLAGS.save_summaries_images:
            summary_image = graph.get_tensor_by_name(
                ('%s/%s:0' % (first_clone_scope, common.IMAGE)).strip('/'))
            summaries.add(
                tf.summary.image('samples/%s' % common.IMAGE, summary_image))

            first_clone_label = graph.get_tensor_by_name(
                ('%s/%s:0' % (first_clone_scope, common.LABEL)).strip('/'))
            # Scale up summary image pixel values for better visualization.
            pixel_scaling = max(1, 255 // dataset.num_classes)
            summary_label = tf.cast(first_clone_label * pixel_scaling,
                                    tf.uint8)
            summaries.add(
                tf.summary.image('samples/%s' % common.LABEL, summary_label))

            first_clone_output = graph.get_tensor_by_name(
                ('%s/%s:0' %
                 (first_clone_scope, common.OUTPUT_TYPE)).strip('/'))
            predictions = tf.expand_dims(tf.argmax(first_clone_output, 3), -1)

            summary_predictions = tf.cast(predictions * pixel_scaling,
                                          tf.uint8)
            summaries.add(
                tf.summary.image('samples/%s' % common.OUTPUT_TYPE,
                                 summary_predictions))

        # Add summaries for losses.
        for loss in tf.get_collection(tf.GraphKeys.LOSSES, first_clone_scope):
            summaries.add(tf.summary.scalar('losses/%s' % loss.op.name, loss))

        # Build the optimizer based on the device specification.
        with tf.device(config.optimizer_device()):
            learning_rate = train_utils.get_model_learning_rate(
                FLAGS.learning_policy, FLAGS.base_learning_rate,
                FLAGS.learning_rate_decay_step,
                FLAGS.learning_rate_decay_factor,
                FLAGS.training_number_of_steps, FLAGS.learning_power,
                FLAGS.slow_start_step, FLAGS.slow_start_learning_rate)
            optimizer = tf.train.MomentumOptimizer(learning_rate,
                                                   FLAGS.momentum)
            summaries.add(tf.summary.scalar('learning_rate', learning_rate))

        startup_delay_steps = FLAGS.task * FLAGS.startup_delay_steps
        for variable in slim.get_model_variables():
            summaries.add(tf.summary.histogram(variable.op.name, variable))

        with tf.device(config.variables_device()):
            total_loss, grads_and_vars = model_deploy.optimize_clones(
                clones, optimizer)
            total_loss = tf.check_numerics(total_loss, 'Loss is inf or nan.')
            summaries.add(tf.summary.scalar('total_loss', total_loss))

            # Modify the gradients for biases and last layer variables.
            last_layers = model.get_extra_layer_scopes(
                FLAGS.last_layers_contain_logits_only)
            grad_mult = train_utils.get_model_gradient_multipliers(
                last_layers, FLAGS.last_layer_gradient_multiplier)
            if grad_mult:
                grads_and_vars = slim.learning.multiply_gradients(
                    grads_and_vars, grad_mult)

            # Create gradient update op.
            grad_updates = optimizer.apply_gradients(grads_and_vars,
                                                     global_step=global_step)
            update_ops.append(grad_updates)
            update_op = tf.group(*update_ops)
            with tf.control_dependencies([update_op]):
                train_tensor = tf.identity(total_loss, name='train_op')

        # Add the summaries from the first clone. These contain the summaries
        # created by model_fn and either optimize_clones() or _gather_clone_loss().
        summaries |= set(
            tf.get_collection(tf.GraphKeys.SUMMARIES, first_clone_scope))

        # Merge all summaries together.
        summary_op = tf.summary.merge(list(summaries))

        # Soft placement allows placing on CPU ops without GPU implementation.
        session_config = tf.ConfigProto(allow_soft_placement=True,
                                        log_device_placement=False)

        # Start the training.
        slim.learning.train(train_tensor,
                            logdir=FLAGS.train_logdir,
                            log_every_n_steps=FLAGS.log_steps,
                            master=FLAGS.master,
                            number_of_steps=FLAGS.training_number_of_steps,
                            is_chief=(FLAGS.task == 0),
                            session_config=session_config,
                            startup_delay_steps=startup_delay_steps,
                            init_fn=train_utils.get_model_init_fn(
                                FLAGS.train_logdir,
                                FLAGS.tf_initial_checkpoint,
                                FLAGS.initialize_last_layer,
                                last_layers,
                                ignore_missing_vars=True),
                            summary_op=summary_op,
                            save_summaries_secs=FLAGS.save_summaries_secs,
                            save_interval_secs=FLAGS.save_interval_secs)