def test_predict_coreness(trained_pipeline):
    assert path_for('data_itos').exists()
    assert path_for('trained_classifier').exists()
    output_dict = predict_coreness(title=TEST_TITLE, abstract=TEST_ABSTRACT)

    assert set(output_dict.keys()) == {'prediction', 'scores'}
    assert output_dict['prediction'] in {'rejected', 'non_core', 'core'}
    assert set(
        output_dict['scores'].keys()) == {'rejected', 'non_core', 'core'}
    assert isclose(output_dict['scores']['rejected'] +
                   output_dict['scores']['non_core'] +
                   output_dict['scores']['core'],
                   1.0,
                   abs_tol=1e-2)
Exemple #2
0
    def core_classifier(**kwargs):
        """Endpoint for the CORE classifier."""

        return predict_coreness(kwargs['title'], kwargs['abstract'])
Exemple #3
0
def predict(title, abstract, base_path):
    with click_spinner.spinner():
        with current_app.app_context():
            if base_path:
                current_app.config['CLASSIFIER_BASE_PATH'] = base_path
            click.echo(predict_coreness(title, abstract))