Exemple #1
0
    def run(self, max_size=10, variable_size=True, diversify=False, view=config.default_view, **kwargs):
        """
        Runs the evolutionary algorithm.

        Parameters
        ----------
        max_size : int
            Maximum size of a solution, e.g., the maximum number of reactions or genes to knock-out or swap.
        variable_size : boolean
            If true, the solution size can change meaning that the combination of knockouts can have different sizes up
            to max_size. Otherwise it only produces knockout solutions with a fixed number of knockouts.
        diversify : bool
            It true, the generator will not be allowed to generate repeated candidates in the initial population.
        view : cameo.parallel.SequentialView, cameo.parallel.MultiprocessingView
            A view for single or multiprocessing.

        Returns
        -------
        TargetOptimizationResult
            The result of the optimization.
        """

        if kwargs.get('seed', None) is None:
            kwargs['seed'] = int(time.time())

        self.heuristic_method.observer = self.observers

        log_level = simulation_logger.level
        simulation_logger.setLevel(logging.CRITICAL)

        if diversify:
            generator = diversify_function(generators.set_generator)
        else:
            generator = generators.set_generator

        with EvaluatorWrapper(view, self._evaluator) as evaluator:
            super(TargetOptimization, self).run(distance_function=set_distance_function,
                                                representation=self.representation,
                                                evaluator=evaluator,
                                                generator=generator,
                                                max_size=max_size,
                                                **kwargs)
            simulation_logger.setLevel(log_level)

            return TargetOptimizationResult(model=self.model,
                                            heuristic_method=self.heuristic_method,
                                            simulation_method=self.simulation_method,
                                            simulation_kwargs=self._simulation_kwargs,
                                            solutions=self.heuristic_method.archive,
                                            objective_function=self.objective_function,
                                            target_type=self._target_type,
                                            decoder=self._decoder,
                                            evaluator=self._evaluator,
                                            seed=kwargs['seed'],
                                            metadata=self.metadata,
                                            view=view)
Exemple #2
0
    def run(self, max_size=10, variable_size=True, diversify=False, view=config.default_view, **kwargs):
        """
        Runs the evolutionary algorithm.

        Parameters
        ----------
        max_size : int
            Maximum size of a solution, e.g., the maximum number of reactions or genes to knock-out or swap.
        variable_size : boolean
            If true, the solution size can change meaning that the combination of knockouts can have different sizes up
            to max_size. Otherwise it only produces knockout solutions with a fixed number of knockouts.
        diversify : bool
            It true, the generator will not be allowed to generate repeated candidates in the initial population.
        view : cameo.parallel.SequentialView, cameo.parallel.MultiprocessingView
            A view for single or multiprocessing.

        Returns
        -------
        TargetOptimizationResult
            The result of the optimization.
        """

        if kwargs.get('seed', None) is None:
            kwargs['seed'] = int(time.time())

        self.heuristic_method.observer = self.observers

        log_level = simulation_logger.level
        simulation_logger.setLevel(logging.CRITICAL)

        if diversify:
            generator = diversify_function(generators.set_generator)
        else:
            generator = generators.set_generator

        with EvaluatorWrapper(view, self._evaluator) as evaluator:
            super(TargetOptimization, self).run(distance_function=set_distance_function,
                                                representation=self.representation,
                                                evaluator=evaluator,
                                                generator=generator,
                                                max_size=max_size,
                                                **kwargs)
            simulation_logger.setLevel(log_level)

            return TargetOptimizationResult(model=self.model,
                                            heuristic_method=self.heuristic_method,
                                            simulation_method=self.simulation_method,
                                            simulation_kwargs=self._simulation_kwargs,
                                            solutions=self.heuristic_method.archive,
                                            objective_function=self.objective_function,
                                            target_type=self._target_type,
                                            decoder=self._decoder,
                                            evaluator=self._evaluator,
                                            seed=kwargs['seed'],
                                            metadata=self.metadata,
                                            view=view)