def test_has_attC(self): replicon = SeqRecord(Seq.Seq(''), id='foo') integron = Integron(replicon, self.cfg) self.assertFalse(integron.has_attC()) replicon = SeqRecord(Seq.Seq(''), id='just_one_attC', name='bar') just_one_attC = Integron(replicon, self.cfg) just_one_attC.add_attC(10, 100, 1, 1e-2, "intersection_tyr_intI") self.assertTrue(just_one_attC.has_attC())
def test_add_attc(self): replicon_name = "acba.007.p01.13" replicon_path = self.find_data( os.path.join('Replicons', replicon_name + '.fst')) topologies = Topology('lin') with FastaIterator(replicon_path) as sequences_db: sequences_db.topologies = topologies replicon = next(sequences_db) data_attc_1 = { "pos_beg": 10, "pos_end": 100, "strand": -1, "evalue": 1.1e-07, "type_elt": "attC", "annotation": "attC", "model": "attc_4", "distance_2attC": np.nan } attc_1 = pd.DataFrame(data_attc_1, columns=self.columns, index=['attc_001']) attc_1 = attc_1.astype(dtype=self.dtype) integron = Integron(replicon, self.cfg) integron.add_attC(attc_1.loc['attc_001', 'pos_beg'], attc_1.loc['attc_001', 'pos_end'], attc_1.loc['attc_001', 'strand'], attc_1.loc['attc_001', 'evalue'], attc_1.loc['attc_001', 'model']) pdt.assert_frame_equal(attc_1, integron.attC) attc_2 = pd.DataFrame(data_attc_1, columns=self.columns, index=['attc_002']) attc_2 = attc_2.astype(dtype=self.dtype) attc_2['pos_beg'] = attc_2['pos_beg'] + 100 attc_2['pos_end'] = attc_2['pos_end'] + 100 attc_2["distance_2attC"] = ( attc_2.loc['attc_002', 'pos_beg'] - attc_1.loc['attc_001', 'pos_end']) % len(replicon) attc = attc_1.append(attc_2) integron.add_attC(attc_2.loc['attc_002', 'pos_beg'], attc_2.loc['attc_002', 'pos_end'], attc_2.loc['attc_002', 'strand'], attc_2.loc['attc_002', 'evalue'], attc_2.loc['attc_002', 'model']) pdt.assert_frame_equal(attc, integron.attC)
def test_annot_calin(self): """ Test func_annot when the integron is a CALIN (attC but no integrase), with 4 proteins: for 3 of them resfam annotations are found, and not for the last 1. """ # Create integron integron1 = Integron(self.replicon, self.cfg) integrons = [integron1] # Add only attc sites (no integrase) integron1.add_attC(17825, 17884, -1, 7e-9, "attc_4") integron1.add_attC(19080, 19149, -1, 7e-4, "attc_4") integron1.add_attC(19618, 19726, -1, 7e-7, "attc_4") # Add proteins between attC sites integron1.add_proteins(self.prot_db) # Check that proteins dataframe is as expected before annotation proteins = pd.DataFrame({"pos_beg": [17375, 17886, 19090, 19721], "pos_end": [17722, 18665, 19749, 20254], "strand": [-1] * 4, "evalue": [np.nan] * 4, "type_elt": ["protein"] * 4, "model": ["NA"] * 4, "distance_2attC": [np.nan] * 4, "annotation": ["protein"] * 4}, index=["ACBA.007.P01_13_20", "ACBA.007.P01_13_21", "ACBA.007.P01_13_22", "ACBA.007.P01_13_23"]) proteins = proteins[["pos_beg", "pos_end", "strand", "evalue", "type_elt", "model", "distance_2attC", "annotation"]] # we need to sort the dataframe # as protein file is parse using biopython and index # the order os sequences is not guarantee pdt.assert_frame_equal(proteins.sort_index(), integron1.proteins.sort_index()) # Annotate proteins func_annot(integrons, self.replicon, self.prot_db, self.hmm_files, self.cfg, self.tmp_dir) # Check that all files generated are as expected files_created = [f for f in glob.glob(os.path.join(self.tmp_dir, "*")) if os.path.isfile(f)] self.assertEqual(set(self.exp_files), set(files_created)) # Check that annotated proteins are as expected proteins.loc["ACBA.007.P01_13_20"] = [17375, 17722, -1, 4.5e-31, "protein", "RF0066", np.nan, "emrE"] proteins.loc["ACBA.007.P01_13_21"] = [17886, 18665, -1, 7.4e-168, "protein", "RF0027", np.nan, "ANT3"] proteins.loc["ACBA.007.P01_13_23"] = [19721, 20254, -1, 6.2e-110, "protein", "RF0003", np.nan, "AAC3-I"] # we need to sort the dataframe # as protein file is parse using biopython and index # the order os sequences is not guarantee pdt.assert_frame_equal(proteins.sort_index(), integron1.proteins.sort_index())
def test_annot_wrong_hmmsearch(self): """ Test that when the given HMMSEARCH command does not exist, it raises an exception specifying that the given command could not run. """ self.cfg._args.hmmsearch = "nimportnaoik" # Create integron integron1 = Integron(self.replicon.name, self.cfg) integrons = [integron1] # Add only attc sites (no integrase) integron1.add_attC(17825, 17884, -1, 7e-9, "attc_4") integron1.add_attC(19080, 19149, -1, 7e-4, "attc_4") integron1.add_attC(19618, 19726, -1, 7e-7, "attc_4") # Add proteins between attC sites integron1.add_proteins(self.prot_db) # Annotate proteins with self.assertRaises(RuntimeError) as ctx: func_annot(integrons, self.replicon, self.prot_db, self.hmm_files, self.cfg, self.tmp_dir) self.assertTrue(re.search("failed : \[Errno 2\] No such file or directory: 'nimportnaoik'", str(ctx.exception)))
def test_annot_wrong_hmm(self): """ Test that when the given hmm file does not exist, it returns an error specifying that the hmm command ended with a non-zero return code. """ wrong_hmm_files = ["myhmm.hmm"] # Create integron integron1 = Integron(self.replicon, self.cfg) integrons = [integron1] # Add only attc sites (no integrase) integron1.add_attC(17825, 17884, -1, 7e-9, "attc_4") integron1.add_attC(19080, 19149, -1, 7e-4, "attc_4") integron1.add_attC(19618, 19726, -1, 7e-7, "attc_4") # Add proteins between attC sites integron1.add_proteins(self.prot_db) # Annotate proteins with self.assertRaises(RuntimeError) as ctx: func_annot(integrons, self.replicon, self.prot_db, wrong_hmm_files, self.cfg, self.tmp_dir) self.assertTrue(str(ctx.exception).endswith(" failed return code = 1"))
def test_type(self): replicon = SeqRecord(Seq.Seq(''), id='foo') no_integrase = Integron(replicon, self.cfg) self.assertIsNone(no_integrase.type()) replicon = SeqRecord(Seq.Seq(''), id='just_one_integrase') just_one_integrase = Integron(replicon, self.cfg) just_one_integrase.add_integrase(10, 100, 'foo', 1, 1e-2, "intersection_tyr_intI") self.assertEqual(just_one_integrase.type(), "In0") replicon = SeqRecord(Seq.Seq(''), id='just_one_attC') just_one_attC = Integron(replicon, self.cfg) just_one_attC.add_attC(10, 100, 1, 1e-2, "intersection_tyr_intI") self.assertEqual(just_one_attC.type(), "CALIN") replicon = SeqRecord(Seq.Seq(''), id='one_integrase_one_attC') one_integrase_one_attC = Integron(replicon, self.cfg) one_integrase_one_attC.add_integrase(10, 100, 'foo', 1, 1e-2, "intersection_tyr_intI") one_integrase_one_attC.add_attC(10, 100, 1, 1e-2, "intersection_tyr_intI") self.assertEqual(one_integrase_one_attC.type(), "complete")
def test_annot_calin_empty(self): """ Test func_annot when the integron is a CALIN (attC but no integrase), without any protein: nothing to annotate """ # Create integron integron1 = Integron(self.replicon, self.cfg) integrons = [integron1] # Add only attc sites (no integrase) integron1.add_attC(17825, 17884, -1, 7e-9, "attc_4") integron1.add_attC(19080, 19149, -1, 7e-4, "attc_4") integron1.add_attC(19618, 19726, -1, 7e-7, "attc_4") # check proteins before annotation proteins = pd.DataFrame(columns=["pos_beg", "pos_end", "strand", "evalue", "type_elt", "model", "distance_2attC", "annotation"]) proteins = proteins.astype(dtype={"pos_beg": "int", "pos_end": "int", "strand": "int", "evalue": "float", "type_elt": "str", "model": "str", "distance_2attC": "float", "annotation": "str"}) pdt.assert_frame_equal(proteins, integron1.proteins) # Annotate proteins func_annot(integrons, self.replicon, self.prot_db, self.hmm_files, self.cfg, self.tmp_dir) # Check that all files generated are as expected files_created = [f for f in glob.glob(os.path.join(self.tmp_dir, "*")) if os.path.isfile(f)] exp_files = ["{}{}".format(self.replicon.id, suffix) for suffix in ("_intI_table.res", "_phage_int_table.res", "_intI.res", "_phage_int.res")] exp_files = [os.path.join(self.tmp_dir, file) for file in exp_files] self.assertEqual(set(exp_files), set(files_created)) # Check proteins after annotation pdt.assert_frame_equal(proteins, integron1.proteins)
def test_annot_multi(self): """ Test func_annot when there are 4 integrons: - 1 calin with 4 proteins, 2 having a resfam annotation - 1 calin with 2 proteins, none having a resfam annotation - 1 in0 - 1 complete with 4 proteins, 3 having a resfam annotation """ # resfam pour: 16, 13, 3, 12 # Create integron in0 integron1 = Integron(self.replicon.name, self.cfg) integron1.add_integrase(56, 1014, "ACBA.007.P01_13_1", 1, 1.9e-25, "intersection_tyr_intI") # Create integron CALIN with resfam proteins integron2 = Integron(self.replicon, self.cfg) integron2.add_attC(7400, 7650, -1, 7e-9, "attc_4") integron2.add_attC(8600, 8650, -1, 7e-4, "attc_4") integron2.add_attC(10200, 10400, -1, 7e-7, "attc_4") integron2.add_attC(10800, 10900, -1, 7e-7, "attc_4") integron2.add_proteins(self.prot_db) # Create integron CALIN without any resfam proteins integron3 = Integron(self.replicon, self.cfg) integron3.add_attC(4320, 4400, -1, 7e-9, "attc_4") integron3.add_proteins(self.prot_db) # Create complete integron integron4 = Integron(self.replicon, self.cfg) integron4.add_attC(17825, 17884, -1, 7e-9, "attc_4") integron4.add_attC(19080, 19149, -1, 7e-4, "attc_4") integron4.add_attC(19618, 19726, -1, 7e-7, "attc_4") integron4.add_integrase(16542, 17381, "ACBA.007.P01_13_19", -1, 1.9e-25, "intersection_tyr_intI") integron4.add_proteins(self.prot_db) integrons = [integron1, integron2, integron3, integron4] # Create dataframes for expected proteins before annotation proteins1 = pd.DataFrame(columns=["pos_beg", "pos_end", "strand", "evalue", "type_elt", "model", "distance_2attC", "annotation"]) proteins1 = proteins1.astype(dtype={"pos_beg": "int", "pos_end": "int", "strand": "int", "evalue": "float", "type_elt": "str", "model": "str", "distance_2attC": "float", "annotation": "str"}) proteins1 = proteins1[["pos_beg", "pos_end", "strand", "evalue", "type_elt", "model", "distance_2attC", "annotation"]] proteins1 = proteins1.astype(dtype=self.prot_dtype) proteins2 = pd.DataFrame({"pos_beg": [7088, 7710, 8650, 10524], "pos_end": [7351, 8594, 10125, 11699], "strand": [1, -1, -1, -1], "evalue": [np.nan] * 4, "type_elt": ["protein"] * 4, "model": ["NA"] * 4, "distance_2attC": [np.nan] * 4, "annotation": ["protein"] * 4}, index=["ACBA.007.P01_13_11", "ACBA.007.P01_13_12", "ACBA.007.P01_13_13", "ACBA.007.P01_13_14"]) proteins2 = proteins2[["pos_beg", "pos_end", "strand", "evalue", "type_elt", "model", "distance_2attC", "annotation"]] proteins2 = proteins2.astype(dtype=self.prot_dtype) proteins3 = pd.DataFrame({"pos_beg": [3546, 4380], "pos_end": [4313, 4721], "strand": [1, 1], "evalue": [np.nan] * 2, "type_elt": ["protein"] * 2, "model": ["NA"] * 2, "distance_2attC": [np.nan] * 2, "annotation": ["protein"] * 2}, index=["ACBA.007.P01_13_6", "ACBA.007.P01_13_7"]) proteins3 = proteins3[["pos_beg", "pos_end", "strand", "evalue", "type_elt", "model", "distance_2attC", "annotation"]] proteins3 = proteins3.astype(dtype=self.prot_dtype) proteins4 = pd.DataFrame({"pos_beg": [17375, 17886, 19090, 19721], "pos_end": [17722, 18665, 19749, 20254], "strand": [-1] * 4, "evalue": [np.nan] * 4, "type_elt": ["protein"] * 4, "model": ["NA"] * 4, "distance_2attC": [np.nan] * 4, "annotation": ["protein"] * 4}, index=["ACBA.007.P01_13_20", "ACBA.007.P01_13_21", "ACBA.007.P01_13_22", "ACBA.007.P01_13_23"]) proteins4 = proteins4[["pos_beg", "pos_end", "strand", "evalue", "type_elt", "model", "distance_2attC", "annotation"]] proteins4 = proteins4.astype(dtype=self.prot_dtype) # Check proteins before annotation expected_proteins = [proteins1, proteins2, proteins3, proteins4] for inte, exp_prot in zip(integrons, expected_proteins): # we need to sort the dataframe # as protein file is parse using biopython and index # the order os sequences is not guarantee pdt.assert_frame_equal(inte.proteins.sort_index(), exp_prot.sort_index()) # Annotate proteins with evalue threshold func_annot(integrons, self.replicon, self.prot_db, self.hmm_files, self.cfg, self.tmp_dir, evalue=1e-32) # Check that all files generated are as expected files_created = [f for f in glob.glob(os.path.join(self.tmp_dir, "*")) if os.path.isfile(f)] self.assertEqual(set(self.exp_files), set(files_created)) # Check that annotated proteins are as expected proteins2.loc["ACBA.007.P01_13_13"] = [8650, 10125, -1, 2.4e-86, "protein", "RF0007", np.nan, "ABC_efflux"] proteins4.loc["ACBA.007.P01_13_21"] = [17886, 18665, -1, 7.4e-168, "protein", "RF0027", np.nan, "ANT3"] proteins4.loc["ACBA.007.P01_13_23"] = [19721, 20254, -1, 6.2e-110, "protein", "RF0003", np.nan, "AAC3-I"] for inte, prots in zip(integrons, expected_proteins): # we need to sort the dataframe # as protein file is parse using biopython and index # the order os sequences is not guarantee pdt.assert_frame_equal(inte.proteins.sort_index(), prots.sort_index()) # Annotate proteins with default evalue (1 more annotation) with self.catch_io(out=True): func_annot(integrons, self.replicon, self.prot_db, self.hmm_files, self.cfg, self.tmp_dir) proteins4.loc["ACBA.007.P01_13_20"] = [17375, 17722, -1, 4.5e-31, "protein", "RF0066", np.nan, "emrE"] for inte, prots in zip(integrons, expected_proteins): pdt.assert_frame_equal(inte.proteins.sort_index(), prots.sort_index()) # Annotate proteins with lower coverage threshold (1 more annotation) with self.catch_io(out=True): func_annot(integrons, self.replicon, self.prot_db, self.hmm_files, self.cfg, self.tmp_dir, coverage=0.4) proteins2.loc["ACBA.007.P01_13_12"] = [7710, 8594, -1, 1.6e-5, "protein", "RF0033", np.nan, "APH3"] for inte, prots in zip(integrons, expected_proteins): pdt.assert_frame_equal(inte.proteins.sort_index(), prots.sort_index())