Exemple #1
0
    def __init__(self, **kw):
        super(Object, self).__init__()
        self.step = kw['step']
        self.pos_x = kw['pos'][0]
        self.pos_y = kw['pos'][1]
        self.vel_vx = kw['vel'][0]
        self.vel_vy = kw['vel'][1]
        self.count = kw['count']
        self.color = kw['color']

        self.COORDS_X = np.ndarray((self.step, self.count))
        self.COORDS_Y = np.ndarray((self.step, self.count))

        self.interect = inter.Interaction(x0=self.pos_x,
                                          vx0=self.vel_vx,
                                          y0=self.pos_y,
                                          vy0=self.vel_vy)

        print('Particle number: ', self.count)
        print('solve_func', self.interect.solve_func(self.count)[0])
        print('solve_func[0][0]', self.interect.solve_func(self.count)[0][0])

        for j in range(self.step):
            for k in range(self.count):
                self.COORDS_X[j, k] = float(
                    self.interect.solve_func(self.count)[0][k])
                self.COORDS_Y[j, k] = float(
                    self.interect.solve_func(self.count)[1][k])
Exemple #2
0
 def __init__(self):
     super().__init__()
     self.mPath = ""
     self.sPath = ""
     self.interaction = interaction.Interaction()
     self.createmap_bt = tkinter.Button(
         self,
         text=u"Create maps",
         state='disabled',
         command=lambda: mapping.create_maps(self.sPath, self.mPath))
     self.run_bt = tkinter.Button(
         self,
         text=u"Start mapping",
         state='disabled',
         command=lambda: interaction.background(
             self.interaction.start_interactive_mapping,
             (self.sPath, self.mPath)))
     self.start_bt = tkinter.Button(
         self,
         text=u"Start recording",
         state='normal',
         command=lambda: self.interaction.start_recording())
     self.stop_bt = tkinter.Button(
         self,
         text=u"Stop recording",
         state='normal',
         command=lambda: self.interaction.stop_recording())
     self.close_app = tkinter.Button(self,
                                     text=u"Close APP",
                                     state='normal',
                                     command=lambda: self.destroy())
     self.parent = None
     self.initialize()
Exemple #3
0
def initialize(pid, device, flags, comm, share_comm):
    message = 'initialize process: {:d} with GPU: {} game: {}'.format(
        pid, device, flags.rom)
    comm.send([-1, 'print', message], dest=flags.threads)
    import os
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
    os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
    os.environ["CUDA_VISIBLE_DEVICES"] = device[-1]
    np.random.seed(flags.seed)
    tf.set_random_seed(flags.seed)
    try:
        import ale_python_interface
    except ImportError:
        import atari_py.ale_python_interface as ale_python_interface

    # initialize ALE environment
    if flags.rom.endswith('.bin'):
        rom = flags.rom
    else:
        rom = "%s.bin" % flags.rom
    full_rom_path = os.path.join(flags.roms_path, rom)
    ale = ale_python_interface.ALEInterface()
    ale.setInt('random_seed', flags.seed)
    ale.setBool('sound', False)
    ale.setBool('display_screen', False)
    ale.setFloat('repeat_action_probability', flags.repeat_action_probability)
    ale.loadROM(full_rom_path)
    num_actions = len(ale.getMinimalActionSet())

    # adjust flags
    flags.num_actions = num_actions
    flags.logs_path = os.path.join(flags.logs_path,
                                   '#' + str(pid) + '_' + flags.rom)
    tf.gfile.MakeDirs(flags.logs_path)

    # print settings
    setting_file = open(os.path.join(flags.logs_path, 'flags.txt'), mode='w+')
    for key, item in flags.__flags.items():
        setting_file.write(key + ' : ' + str(item) + '\n')

    # initialize agent
    if flags.ot:
        network = neural_networks.OptimalityTighteningNetwork(
            pid, flags, device, share_comm)
    else:
        network = neural_networks.DeepQNetwork(pid, flags, device, share_comm)

    setting_file.write(network.nn_structure_file)
    setting_file.close()

    if flags.ot:
        agent = agents.OptimalityTigheningAgent(pid, network, flags, comm,
                                                share_comm)
    else:
        agent = agents.QLearning(pid, network, flags, comm, share_comm)
    interaction.Interaction(pid, ale, agent, flags, comm).start()
Exemple #4
0
def start(environment_parameter, agent_parameter, showMessage):
    """ 
    To open an interface, set parameters and simulate the given experiment
    """
    agent_ = agn.Agent(agent_parameter)
    agent = agent_.agent
    environment = env.Environment(environment_parameter)
    interaction = intrc.Interaction(agent, environment, agent_parameter,
                                    environment_parameter)
    interaction.run_save(showMessage)
    file_name = interaction.file_name
    print(file_name)
    return file_name
Exemple #5
0
def main():
    global driver

    print("processing")
    driver = webdriver.Chrome("D:/chromedriver.exe")
    log = login.Login(driver, username, password)
    log.signin()
    #link for the channel to get data of followers from
    driver.get('https://mobile.twitter.com/unity3d')
    time.sleep(3)
    interact = interaction.Interaction(driver)
    interact.clicker()
    interact.follow()

    time.sleep(5)
    print('kana kata')
Exemple #6
0
 def move(self, action: str) -> None:
     """Interpretes order given by
     get_action and move character.
     """
     move_dict = {'^': (0, 1), '<': (-1, 0), 'v': (0, -1), '>': (1, 0)}
     for i in range(self.nb_player):
         move_dict[str(i + 1)] = i + 1
     for char in action:
         if isinstance(move_dict[char], tuple):
             (d_x, d_y) = move_dict[char]
             inter = it.Interaction(self, index_character, moving_character,
                                    d_x, d_y)
             inter.interaction()
         if isinstance(move_dict[char], int):
             moving_character = self.character_list[move_dict[char]]
             index_character = move_dict[char]
     self.wincheck()
Exemple #7
0
def main():
    global driver

    print("processing!")
    driver = webdriver.Chrome("D:/chromedriver.exe")
    l = login.Login(driver, username, password)
    l.signin()
    driver.get('https://www.instagram.com/unitytechnologies/')

    col = collector.Collector(driver)
    col.get_followers()
    print("followers: ", col.get_num_of_followers())
    print("post: ", col.get_num_of_post())
    print("following: ", col.get_num_of_following())

    followButton = interaction.Interaction(driver)
    followButton.follow()

    time.sleep(60)
Exemple #8
0
#!/usr/bin/env python
'''This runs the PbD system (i.e. the backend).'''

# Core ROS imports come first.
import roslib
roslib.load_manifest('pr2_pbd_interaction')
import rospy

if __name__ == '__main__':
    # Check whether we want code coverage, and start if so.
    use_coverage = rospy.get_param('/pr2_pbd_interaction/coverage',
                                   default=False)
    if use_coverage:
        from coverage import coverage
        cov = coverage(
            include="*/pr2_pbd_interaction/src/*.py",  # source files
            omit="*/src/pr2_pbd_interaction/*"  # generated files
        )
        cov.start()

    # Run the system
    import interaction
    interaction_ = interaction.Interaction()
    rospy.spin()

    # System execution finished; generate coverage report if enabled.
    if use_coverage:
        cov.stop()
        cov.save()
        cov.html_report(title='PR2 PbD code coverage')
Exemple #9
0
import initialization
import initialization_detail
import environment as env
import agent as agn
import interaction as intrc

environment_detail = initialization_detail.environment_details()
environment_parameter, agent_parameter = initialization.config()

#Give the file_name to just plot a previousely saved simulation
file_name = None

if file_name is None:
    agent_types = ('positive_h', 'negative_h', 'viterbi', 'absorbing')
    agent_ID = 0
    agent_parameter[1][
        agent_types[agent_ID]]['agent_type'] = agent_types[agent_ID]
    agent_parameter_ = agent_parameter[1][agent_types[agent_ID]]
    agent_ = agn.Agent(agent_parameter_)
    agent = agent_.agent
    environment = env.Environment(environment_parameter)
    interaction = intrc.Interaction(agent, environment, agent_parameter_,
                                    environment_parameter)
    interaction.run_save("")
    file_name = interaction.file_name
    print(file_name)

plt_ = intrc.Plot_results(file_name)
plt_.showResults()
plt_.print_setting()