from interface import NearestNeighbor from amuse.units import units, nbody_system from amuse.ext import plummer from amuse.io import text number_of_particles = 1000 mass_per_particle = 1 | units.MSun convert_nbody = nbody_system.nbody_to_si( number_of_particles * mass_per_particle, 1.0 | units.parsec) uc = plummer.MakePlummerModel(number_of_particles, convert_nbody) particles = uc.result nn = NearestNeighbor() nn.particles.add_particles(particles) print "number of particles:", len(nn.particles) nn.find_nearest_neighbors() local_particles = nn.particles.copy() for p in local_particles: delta = p.neighbor1.position - p.position p.distance_to_neighbor = delta.length() p.dx = delta.x p.dy = delta.y p.dz = delta.z output = text.TableFormattedText("output.txt", set=local_particles) output.attribute_names = ['x', 'y', 'z', 'dx', 'dy', 'dz'] output.attribute_types = [units.parsec] * 6
from interface import NearestNeighbor from amuse.lab import * from amuse.io import text if __name__ == '__main__': number_of_particles = 1000 particles = new_plummer_sphere(1000) code = NearestNeighbor() code.particles.add_particles(particles) code.run() local_particles = code.particles.copy() delta = local_particles.neighbor1.as_set().position - local_particles.position local_particles.dx = delta[...,0] local_particles.dy = delta[...,1] local_particles.dz = delta[...,2] output = text.TableFormattedText("output.txt", set = local_particles) output.attribute_names = ['x','y','z', 'dx', 'dy','dz'] output.store()
from interface import NearestNeighbor from amuse.lab import * from amuse.io import text if __name__ == '__main__': number_of_particles = 1000 particles = new_plummer_sphere(1000) code = NearestNeighbor() code.set_maximum_number_of_particles(5000) code.commit_parameters code.particles.add_particles(particles) code.run() local_particles = code.particles.copy() delta = local_particles.neighbor1.position - local_particles.position local_particles.dx = delta[..., 0] local_particles.dy = delta[..., 1] local_particles.dz = delta[..., 2] output = text.TableFormattedText("output.txt", set=local_particles) output.attribute_names = ['x', 'y', 'z', 'dx', 'dy', 'dz'] output.store()
from interface import NearestNeighbor from amuse.lab import * from amuse.io import text if __name__ == '__main__': number_of_particles = 1000 particles = new_plummer_sphere(1000) code = NearestNeighbor() code.particles.add_particles(particles) code.run() local_particles = code.particles.copy() delta = local_particles.neighbor1.as_set( ).position - local_particles.position local_particles.dx = delta[..., 0] local_particles.dy = delta[..., 1] local_particles.dz = delta[..., 2] output = text.TableFormattedText("output.txt", set=local_particles) output.attribute_names = ['x', 'y', 'z', 'dx', 'dy', 'dz'] output.store()
from interface import NearestNeighbor from amuse.lab import * from amuse.io import text if __name__ == '__main__': number_of_particles = 1000 particles = new_plummer_sphere(1000) code = NearestNeighbor() code.set_maximum_number_of_particles(5000) code.commit_parameters code.particles.add_particles(particles) code.run() local_particles = code.particles.copy() delta = local_particles.neighbor1.as_set().position - local_particles.position local_particles.dx = delta[...,0] local_particles.dy = delta[...,1] local_particles.dz = delta[...,2] output = text.TableFormattedText("output.txt", set = local_particles) output.attribute_names = ['x','y','z', 'dx', 'dy','dz'] output.store()
from interface import NearestNeighbor from amuse.units import units, nbody_system from amuse.ext import plummer from amuse.io import text number_of_particles = 1000 mass_per_particle = 1 | units.MSun convert_nbody = nbody_system.nbody_to_si(number_of_particles * mass_per_particle, 1.0 | units.parsec) uc = plummer.MakePlummerModel(number_of_particles, convert_nbody) particles = uc.result nn = NearestNeighbor() nn.particles.add_particles(particles) print "number of particles:", len(nn.particles) nn.find_nearest_neighbors() local_particles = nn.particles.copy() for p in local_particles: delta = p.neighbor1.position - p.position p.distance_to_neighbor = delta.length() p.dx = delta.x p.dy = delta.y p.dz = delta.z output = text.TableFormattedText("output.txt", set = local_particles) output.attribute_names = ['x','y','z', 'dx', 'dy','dz']