def der_optical(dates): client = Client(n_workers=12) boi = ['red', 'blue', 'green', 'nir', 'swir1', 'swir2'] vars_loc = os.environ['WIN_SVR_DATA'] + 'Saldana/vars/' files = list(filter(re.compile(r'^opt_.*').search, os.listdir(vars_loc))) files = list(map(lambda x: vars_loc + x, files)) dataset = xr.open_mfdataset(files, chunks={ 'y': 1000, 'x': 750, 'time': -1 }) print('Concat Dataset\n') print(dataset) _location = os.environ['WIN_SVR_DATA'] + 'Saldana/features/' itp.interpolate_dataset(dataset, _location, boi, date_of_analysis=dates, der=True) print('Dataset interpolation done!\n')
def main_optical(dates): saldana = regionstack.regionStack('Saldana', attrs=['S2', 'LC08']) #saldana.harmonize_L8() boi = ['red', 'blue', 'green', 'nir', 'swir1', 'swir2'] vars_loc = os.environ['WIN_SVR_DATA'] + 'Saldana/vars/' for band in boi: if not os.path.isfile(vars_loc + 'opt_' + band + '.nc'): ## TO-DO add isel for relevant dates sentinel = saldana.S2[ band] #.isel(time=slice(min(dates)-120?D-security_margin, max(dates)+16D+security_margin)) landsat = saldana.LC08[ band] #.isel(time=slice(min(dates)-120?D, max(dates)+16D)) aligned = xr.align(sentinel, landsat, exclude={'time'}) da = xr.concat([aligned[0], aligned[1]], dim='time') da.sortby('time').to_netcdf(vars_loc + 'opt_' + band + '.nc') client = Client(n_workers=12) client.upload_file('c_Class_Models/interpolatets.py') files = list(filter(re.compile(r'^opt_.*').search, os.listdir(vars_loc))) files = list(map(lambda x: vars_loc + x, files)) print('Reading concatenated Dataset') dataset = xr.open_mfdataset(files, chunks={ 'y': 1000, 'x': 750, 'time': -1 }) print('Concat Dataset\n') print(dataset) _location = os.environ['WIN_SVR_DATA'] + 'Saldana/features/' itp.interpolate_dataset(dataset, _location, boi, date_of_analysis=dates, der=False) print('Dataset interpolation done!\n')
def main_radar_text(dates): saldana = regionstack.regionStack( 'Saldana', attrs=['S1_ASCENDING_GLCM', 'S1_DESCENDING_GLCM']) boi = [ 'VV_ASM', 'VV_Contrast', 'VV_Dissimilarity', 'VV_Energy', 'VV_Entropy', 'VV_GLCMCorrelation', 'VV_GLCMMean', 'VV_GLCMVariance', 'VV_Homogeneity' ] vars_loc = os.environ['WIN_SVR_DATA'] + 'Saldana/vars/' for band in boi: if not os.path.isfile(vars_loc + 'rad_' + band + '.nc'): asc = saldana.S1_ASCENDING_GLCM[band] dsc = saldana.S1_DESCENDING_GLCM[band] da = xr.concat([asc, dsc], dim='time') print('{} band was concatenated. Writing DataArray'.format(band)) da.to_netcdf(vars_loc + 'rad_' + band + '.nc') client = Client(n_workers=12) client.upload_file('b_Temporal_Stack/interpolatets.py') files = list(filter(re.compile(r'^rad_.*').search, os.listdir(vars_loc))) files = list(map(lambda x: vars_loc + x, files)) print('Reading concatenated Dataset') dataset = xr.open_mfdataset(files, chunks={ 'y': 1000, 'x': 750, 'time': -1 }) print('Concat Dataset\n') print(dataset) _location = os.environ['WIN_SVR_DATA'] + 'Saldana/features/' itp.interpolate_dataset(dataset, _location, boi, date_of_analysis=dates) itp.interpolate_dataset(dataset, _location, boi, date_of_analysis=dates, der=True)