Exemple #1
0
def spherical_point_projection_2(interpolation: str,
                                 X1: np.ndarray,
                                 X2: np.ndarray,
                                 s1: float,
                                 TOLER: float = 1e-8,
                                 MAXITER: int = 20) -> np.ndarray:

    n_nodes_1 = len(X1[0])
    n_nodes_2 = len(X2[0])
    x1 = (X1 @ intp.lagrange_polynomial(n_nodes_1 - 1, [s1])).flatten()
    dx1 = (X1 @ intp.lagrange_polynomial_derivative(n_nodes_1 - 1,
                                                    [s1])).flatten()

    def R1(s):
        x2 = (X2 @ intp.lagrange_polynomial(n_nodes_2 - 1, [s])).flatten()
        dx2 = (X2 @ intp.lagrange_polynomial_derivative(n_nodes_2 - 1,
                                                        [s])).flatten()
        d = x1 - x2
        v = _triple(dx1, dx2, x1 - x2)
        return 1 / v * (np.dot(dx2, d) * np.cross(d, dx1) +
                        0.5 * np.dot(d, d) * np.cross(dx1, dx2))

    def f(s):
        Rs = R1(s[0])
        return Rs.dot(Rs)

    sol = optimize.brute(f, [(-1, 1)])
    s2 = sol[0]
    x2 = (X2 @ intp.lagrange_polynomial(n_nodes_2 - 1, [s2])).flatten()
    R = R1(s2)
    return (s2, x2, R)
Exemple #2
0
def circular_point_projection(interpolation: str,
                              X1: np.ndarray,
                              X2: np.ndarray,
                              s1: float,
                              TOLER: float = 1e-8,
                              MAXITER: int = 100) -> np.ndarray:

    n_nodes_1 = len(X1[0])
    n_nodes_2 = len(X2[0])
    x1 = (X1 @ intp.lagrange_polynomial(n_nodes_1 - 1, [s1])).flatten()
    dx1 = (X1 @ intp.lagrange_polynomial_derivative(n_nodes_1 - 1,
                                                    [s1])).flatten()
    x2a = (X2 @ intp.lagrange_polynomial(n_nodes_2 - 1, [s1 + 0.01])).flatten()
    x2b = (X2 @ intp.lagrange_polynomial(n_nodes_2 - 1, [s1 - 0.01])).flatten()
    u = np.zeros((5))
    u[0] = s1
    u[1:3] = (x1 - x2b) / 2
    u[3:5] = (x2a - x1) / 2
    R = np.ones((5))
    i = 0
    while np.linalg.norm(R) > TOLER and i < MAXITER:
        K = np.zeros((5, 5))
        if interpolation == "Lagrange polynoms":
            s2 = u[0]
            v1 = u[1:3]
            v2 = u[3:5]
            x2 = (X2 @ intp.lagrange_polynomial(n_nodes_2 - 1, [s2])).flatten()
            dx2 = (X2 @ intp.lagrange_polynomial_derivative(
                n_nodes_2 - 1, [s2])).flatten()
            ddx2 = (X2 @ intp.lagrange_polynomial_2_derivative(
                n_nodes_2 - 1, [s2])).flatten()
            R[:2] = x1 - (x2 + v2 - v1)
            R[2] = 0 - (v2.dot(v2) - v1.dot(v1))
            R[3] = 0 - (v1.dot(dx1))
            R[4] = 0 - (v2.dot(dx2))
            K[0, :2] = dx2
            K[0, 2] = 0
            K[0, 3] = 0
            K[0, 4] = ddx2.dot(v2)
            K[1:3, :2] = -np.identity(2)
            K[1:3, 2] = -2 * v1
            K[1:3, 3] = dx1
            K[1:3, 4] = 0
            K[3:5, :2] = np.identity(2)
            K[3:5, 2] = 2 * v2
            K[3:5, 3] = 0
            K[3:5, 4] = dx2
        u += np.linalg.solve(K.T, R)
        i += 1
    if i == MAXITER:
        print("No convergence")
        return False
    return u
Exemple #3
0
 def fprime(s):
     x2 = (X2 @ intp.lagrange_polynomial(n_nodes_2 - 1, [s])).flatten()
     dx2 = (X2 @ intp.lagrange_polynomial_derivative(n_nodes_2 - 1,
                                                     [s])).flatten()
     ddx2 = (X2 @ intp.lagrange_polynomial_2_derivative(n_nodes_2 - 1,
                                                        [s])).flatten()
     d3x2 = (X2 @ intp.lagrange_polynomial_3_derivative(n_nodes_2 - 1,
                                                        [s])).flatten()
     d = x1 - x2
     v = _triple(dx1, dx2, x1 - x2)
     dv = _triple(dx1, ddx2, d)
     ddv = _triple(dx1, d3x2, d)
     R1_ = 1 / v * (np.dot(dx2, d) * np.cross(d, dx1) +
                    0.5 * np.dot(d, d) * np.cross(dx1, dx2))
     dR1_ = 1 / v * (1 / 2 * np.dot(d, d) * np.cross(dx1, ddx2) +
                     (np.dot(ddx2, d) - np.dot(dx2, dx2) -
                      dv / v * np.dot(dx2, d)) * np.cross(d, dx1) -
                     1 / 2 * dv / v * np.dot(d, d) * np.cross(dx1, dx2))
     ddR1_ = (np.cross(dx1, dx2) *
              ((-(ddv * v) + dv *
                (2 * dv + v)) * np.dot(d, d) + 2 * v**2 * np.dot(d, ddx2) +
               2 * v**2 * np.dot(dx2, dx2)) + 2 * np.cross(d, dx1) *
              ((-(ddv * v) + dv *
                (2 * dv + v)) * np.dot(d, dx2) + v * v * np.dot(d, d3x2) -
               2 * v * dv * np.dot(d, ddx2) - 3 * v**2 * np.dot(dx2, ddx2) +
               2 * v * dv * np.dot(dx2, dx2)) + v**2 * np.cross(dx1, d3x2) *
              np.dot(d, d) - 2 * v * np.cross(dx1, ddx2) *
              (dv * np.dot(d, d) + v * np.dot(d, dx2))) / (2 * v**3)
     return np.dot(ddR1_, R1_) + np.dot(dR1_, dR1_)
Exemple #4
0
    def __init__(self, parent_element: int, n_integration_points: int,
                 possible_contact_partners: list, dual_basis_functions: bool):
        # --------------------------------------------------------------
        # nodes
        self.parent = parent_element
        self.dof = np.zeros_like(self.parent.dof)
        self.dof[6] = True
        self.possible_contact_partners = possible_contact_partners

        # Lagrange multiplier interpolation
        if dual_basis_functions == True:
            self.Nlam = [
                lambda x: intp.dual_basis_function(self.parent.n_nodes - 1, x)
            ]
        else:
            self.Nlam = [
                lambda x: intp.lagrange_polynomial(self.parent.n_nodes - 1, x)
            ]

        lg = np.polynomial.legendre.leggauss(n_integration_points)
        self.int_pts = [
            struct.IntegrationPoint(point_location=lg[0][g], weight=lg[1][g])
            for g in range(len(lg[0]))
        ]

        # pre-computed values for efficiency
        if len(self.int_pts) > 0:
            self.N_displacement = self.parent.Ndis[0](
                [self.int_pts[g].loc for g in range(len(self.int_pts))])
            self.dN_displacement = self.parent.Ndis[1](
                [self.int_pts[g].loc for g in range(len(self.int_pts))])
            self.N_lagrange = self.Nlam[0](
                [self.int_pts[g].loc for g in range(len(self.int_pts))])
Exemple #5
0
 def R1(s):
     x2 = (X2 @ intp.lagrange_polynomial(n_nodes_2 - 1, [s])).flatten()
     dx2 = (X2 @ intp.lagrange_polynomial_derivative(n_nodes_2 - 1,
                                                     [s])).flatten()
     d = x1 - x2
     v = _triple(dx1, dx2, x1 - x2)
     return 1 / v * (np.dot(dx2, d) * np.cross(d, dx1) +
                     0.5 * np.dot(d, d) * np.cross(dx1, dx2))
Exemple #6
0
 def f(s):
     x2 = (X2 @ intp.lagrange_polynomial(n_nodes_2 - 1, [s])).flatten()
     dx2 = (X2 @ intp.lagrange_polynomial_derivative(n_nodes_2 - 1,
                                                     [s])).flatten()
     ddx2 = (X2 @ intp.lagrange_polynomial_2_derivative(n_nodes_2 - 1,
                                                        [s])).flatten()
     d = x1 - x2
     v = _triple(dx1, dx2, x1 - x2)
     R1_ = 1 / v * (np.dot(dx2, d) * np.cross(d, dx1) +
                    0.5 * np.dot(d, d) * np.cross(dx1, dx2))
     dv = _triple(dx1, ddx2, d)
     dR1_ = 1 / v * (1 / 2 * np.dot(d, d) * np.cross(dx1, ddx2) +
                     (np.dot(ddx2, d) - np.dot(dx2, dx2) -
                      dv / v * np.dot(dx2, d)) * np.cross(d, dx1) -
                     1 / 2 * dv / v * np.dot(d, d) * np.cross(dx1, dx2))
     return np.dot(dR1_, R1_)
Exemple #7
0
 def test_nearest_point_projection_1(self):
     correct = np.array([0, 0, 0, 5])
     X = np.array([[0, 0, 0], [10, 0, 0]]).T
     P = np.array([5, 0, 5])
     interpolation_d0 = lambda x: intp.lagrange_polynomial(
         degree=X.shape[1] - 1, eval_pts=x)
     interpolation_d1 = lambda x: intp.lagrange_polynomial_derivative(
         degree=X.shape[1] - 1, eval_pts=x)
     interpolation_d2 = lambda x: intp.lagrange_polynomial_2_derivative(
         degree=X.shape[1] - 1, eval_pts=x)
     u = proj.nearest_point_projection(interpolation_d0,
                                       interpolation_d1,
                                       interpolation_d2,
                                       X,
                                       P,
                                       s0=0,
                                       TOLER=1e-8,
                                       MAXITER=10)
     self.assertTrue(np.allclose(u, correct, rtol=1e-10))
Exemple #8
0
 def test_nearest_point_projection_2(self):
     correct = np.array([-0.23045933, 0.38268789, -0.0406458, -0.4820473])
     X = np.array([[0, 0, 0], [1, 0, 0.4], [1.5, 0.4, 1.0], [1.2, 1.0,
                                                             1.7]]).T
     P = np.array([1.5, 0.0, 0.0])
     interpolation_d0 = lambda x: intp.lagrange_polynomial(
         degree=X.shape[1] - 1, eval_pts=x)
     interpolation_d1 = lambda x: intp.lagrange_polynomial_derivative(
         degree=X.shape[1] - 1, eval_pts=x)
     interpolation_d2 = lambda x: intp.lagrange_polynomial_2_derivative(
         degree=X.shape[1] - 1, eval_pts=x)
     u = proj.nearest_point_projection(interpolation_d0,
                                       interpolation_d1,
                                       interpolation_d2,
                                       X,
                                       P,
                                       s0=0,
                                       TOLER=1e-8,
                                       MAXITER=10)
     self.assertTrue(np.allclose(u, correct, rtol=1e-10))
def lagrange_interpolation_order_n(N):
    # n: Number of points to use in interpolation
    x_ = symbols('x_0:' + str(N))
    msg = "## Polinomio interpolante  \nComo primer paso se construyen los polinomios de Lagrange asociados" \
        + " a cada uno de los {} puntos $x_i$ solicitados para la interpolación. ".format(N) \
        + "Tenga en cuenta que los polinomios serán de grado {}.".format(N-1)
    dmd(msg)

    msg = "L_{i,n}(x) = \\prod_{j=0 \\ j\\neq i}^n \\frac{x-x_j}{x_i-x_j}"
    dtx("$$" + msg + "$$")
    cont = 0
    while cont < N:
        dtx(tex_cat(["L_{{" + str(cont) + "," + str(N) + "}}(x)=", \
        lagrange_polynomial(x_, cont, x)]))
        cont += 1
    msg = "Ahora, con los polinomios de Lagrange construidos y la evaluación de" \
        + " la función en los puntos, construimos el polinomio interpolante de" \
        + " grado {}, que suponemos como aproximación a la función.".format(N-1)
    dmd(msg)
    msg = "P_n(x) = \\sum_{i=0]^n f(x_i) L_{i,n}(x)"
    polynomial_approx = lagrange_interpolation(x_, f, x)
    dtx(tex_cat(["P_" + str(N) + "(x)=", polynomial_approx]))
    return polynomial_approx
Exemple #10
0
plot_step = .001

X1 = list()
Y1 = list()

XC = list()
YC = list()

for i in np.arange(a, b, step):
    X1.append(i)
    Y1.append(f(i))

XC = interpolation.chebyshev_nodes(a, b, n)
YC = list(map(f, XC))

L = interpolation.lagrange_polynomial(X1, Y1)
L_func = sp.lambdify(sp.symbols('x'), L)

L_c = interpolation.lagrange_polynomial(XC, YC)
L_c_func = sp.lambdify(sp.symbols('x'), L_c)

N = interpolation.new_newton_polynomial(X1, Y1)
N_func = sp.lambdify(sp.symbols('x'), N)

N_c = interpolation.new_newton_polynomial(XC, YC)
N_c_func = sp.lambdify(sp.symbols('x'), N_c)

Xs = list(np.arange(a, b, plot_step))

Y_f = list(map(f, Xs))
Exemple #11
0
def spherical_point_projection_test(interpolation: str,
                                    X1: np.ndarray,
                                    X2: np.ndarray,
                                    s1: float,
                                    TOLER: float = 1e-8,
                                    MAXITER: int = 20) -> np.ndarray:

    n_nodes_1 = len(X1[0])
    n_nodes_2 = len(X2[0])
    x1 = (X1 @ intp.lagrange_polynomial(n_nodes_1 - 1, [s1])).flatten()
    dx1 = (X1 @ intp.lagrange_polynomial_derivative(n_nodes_1 - 1,
                                                    [s1])).flatten()

    def R1(s):
        x2 = (X2 @ intp.lagrange_polynomial(n_nodes_2 - 1, [s])).flatten()
        dx2 = (X2 @ intp.lagrange_polynomial_derivative(n_nodes_2 - 1,
                                                        [s])).flatten()
        d = x1 - x2
        v = _triple(dx1, dx2, x1 - x2)
        return 1 / v * (np.dot(dx2, d) * np.cross(d, dx1) +
                        0.5 * np.dot(d, d) * np.cross(dx1, dx2))

    def f(s):
        x2 = (X2 @ intp.lagrange_polynomial(n_nodes_2 - 1, [s])).flatten()
        dx2 = (X2 @ intp.lagrange_polynomial_derivative(n_nodes_2 - 1,
                                                        [s])).flatten()
        ddx2 = (X2 @ intp.lagrange_polynomial_2_derivative(n_nodes_2 - 1,
                                                           [s])).flatten()
        d = x1 - x2
        v = _triple(dx1, dx2, x1 - x2)
        R1_ = 1 / v * (np.dot(dx2, d) * np.cross(d, dx1) +
                       0.5 * np.dot(d, d) * np.cross(dx1, dx2))
        dv = _triple(dx1, ddx2, d)
        dR1_ = 1 / v * (1 / 2 * np.dot(d, d) * np.cross(dx1, ddx2) +
                        (np.dot(ddx2, d) - np.dot(dx2, dx2) -
                         dv / v * np.dot(dx2, d)) * np.cross(d, dx1) -
                        1 / 2 * dv / v * np.dot(d, d) * np.cross(dx1, dx2))
        return np.dot(dR1_, R1_)

    def fprime(s):
        x2 = (X2 @ intp.lagrange_polynomial(n_nodes_2 - 1, [s])).flatten()
        dx2 = (X2 @ intp.lagrange_polynomial_derivative(n_nodes_2 - 1,
                                                        [s])).flatten()
        ddx2 = (X2 @ intp.lagrange_polynomial_2_derivative(n_nodes_2 - 1,
                                                           [s])).flatten()
        d3x2 = (X2 @ intp.lagrange_polynomial_3_derivative(n_nodes_2 - 1,
                                                           [s])).flatten()
        d = x1 - x2
        v = _triple(dx1, dx2, x1 - x2)
        dv = _triple(dx1, ddx2, d)
        ddv = _triple(dx1, d3x2, d)
        R1_ = 1 / v * (np.dot(dx2, d) * np.cross(d, dx1) +
                       0.5 * np.dot(d, d) * np.cross(dx1, dx2))
        dR1_ = 1 / v * (1 / 2 * np.dot(d, d) * np.cross(dx1, ddx2) +
                        (np.dot(ddx2, d) - np.dot(dx2, dx2) -
                         dv / v * np.dot(dx2, d)) * np.cross(d, dx1) -
                        1 / 2 * dv / v * np.dot(d, d) * np.cross(dx1, dx2))
        ddR1_ = (np.cross(dx1, dx2) *
                 ((-(ddv * v) + dv *
                   (2 * dv + v)) * np.dot(d, d) + 2 * v**2 * np.dot(d, ddx2) +
                  2 * v**2 * np.dot(dx2, dx2)) + 2 * np.cross(d, dx1) *
                 ((-(ddv * v) + dv *
                   (2 * dv + v)) * np.dot(d, dx2) + v * v * np.dot(d, d3x2) -
                  2 * v * dv * np.dot(d, ddx2) - 3 * v**2 * np.dot(dx2, ddx2) +
                  2 * v * dv * np.dot(dx2, dx2)) + v**2 * np.cross(dx1, d3x2) *
                 np.dot(d, d) - 2 * v * np.cross(dx1, ddx2) *
                 (dv * np.dot(d, d) + v * np.dot(d, dx2))) / (2 * v**3)
        return np.dot(ddR1_, R1_) + np.dot(dR1_, dR1_)

    s2array = np.linspace(-1, 1, 200)
    R1array = np.zeros_like(s2array)
    dR1array = np.zeros_like(s2array)
    ddR1array = np.zeros_like(s2array)
    for i in range(s2array.shape[0]):
        R1array[i] = np.linalg.norm(R1(s2array[i]))
        dR1array[i] = f(s2array[i])
        ddR1array[i] = fprime(s2array[i])
    return (s2array, R1array, dR1array, ddR1array)
Exemple #12
0
def spherical_point_projection_3(interpolation: str,
                                 X1: np.ndarray,
                                 X2: np.ndarray,
                                 s1: float,
                                 TOLER: float = 1e-8,
                                 MAXITER: int = 20) -> np.ndarray:

    n_nodes_1 = len(X1[0])
    n_nodes_2 = len(X2[0])
    x1 = (X1 @ intp.lagrange_polynomial(n_nodes_1 - 1, [s1])).flatten()
    dx1 = (X1 @ intp.lagrange_polynomial_derivative(n_nodes_1 - 1,
                                                    [s1])).flatten()

    def R1(s):
        x2 = (X2 @ intp.lagrange_polynomial(n_nodes_2 - 1, [s])).flatten()
        dx2 = (X2 @ intp.lagrange_polynomial_derivative(n_nodes_2 - 1,
                                                        [s])).flatten()
        d = x1 - x2
        v = _triple(dx1, dx2, x1 - x2)
        return 1 / v * (np.dot(dx2, d) * np.cross(d, dx1) +
                        0.5 * np.dot(d, d) * np.cross(dx1, dx2))

    def f(s):
        x2 = (X2 @ intp.lagrange_polynomial(n_nodes_2 - 1, [s])).flatten()
        dx2 = (X2 @ intp.lagrange_polynomial_derivative(n_nodes_2 - 1,
                                                        [s])).flatten()
        ddx2 = (X2 @ intp.lagrange_polynomial_2_derivative(n_nodes_2 - 1,
                                                           [s])).flatten()
        d = x1 - x2
        v = _triple(dx1, dx2, x1 - x2)
        R1_ = 1 / v * (np.dot(dx2, d) * np.cross(d, dx1) +
                       0.5 * np.dot(d, d) * np.cross(dx1, dx2))
        dv = _triple(dx1, ddx2, d)
        dR1_ = 1 / v * (1 / 2 * np.dot(d, d) * np.cross(dx1, ddx2) +
                        (np.dot(ddx2, d) - np.dot(dx2, dx2) -
                         dv / v * np.dot(dx2, d)) * np.cross(d, dx1) -
                        1 / 2 * dv / v * np.dot(d, d) * np.cross(dx1, dx2))
        return np.dot(dR1_, R1_)

    def fprime(s):
        x2 = (X2 @ intp.lagrange_polynomial(n_nodes_2 - 1, [s])).flatten()
        dx2 = (X2 @ intp.lagrange_polynomial_derivative(n_nodes_2 - 1,
                                                        [s])).flatten()
        ddx2 = (X2 @ intp.lagrange_polynomial_2_derivative(n_nodes_2 - 1,
                                                           [s])).flatten()
        d3x2 = (X2 @ intp.lagrange_polynomial_3_derivative(n_nodes_2 - 1,
                                                           [s])).flatten()
        d = x1 - x2
        v = _triple(dx1, dx2, x1 - x2)
        dv = _triple(dx1, ddx2, d)
        ddv = _triple(dx1, d3x2, d)
        R1_ = 1 / v * (np.dot(dx2, d) * np.cross(d, dx1) +
                       0.5 * np.dot(d, d) * np.cross(dx1, dx2))
        dR1_ = 1 / v * (1 / 2 * np.dot(d, d) * np.cross(dx1, ddx2) +
                        (np.dot(ddx2, d) - np.dot(dx2, dx2) -
                         dv / v * np.dot(dx2, d)) * np.cross(d, dx1) -
                        1 / 2 * dv / v * np.dot(d, d) * np.cross(dx1, dx2))
        ddR1_ = (np.cross(dx1, dx2) *
                 ((-(ddv * v) + dv *
                   (2 * dv + v)) * np.dot(d, d) + 2 * v**2 * np.dot(d, ddx2) +
                  2 * v**2 * np.dot(dx2, dx2)) + 2 * np.cross(d, dx1) *
                 ((-(ddv * v) + dv *
                   (2 * dv + v)) * np.dot(d, dx2) + v * v * np.dot(d, d3x2) -
                  2 * v * dv * np.dot(d, ddx2) - 3 * v**2 * np.dot(dx2, ddx2) +
                  2 * v * dv * np.dot(dx2, dx2)) + v**2 * np.cross(dx1, d3x2) *
                 np.dot(d, d) - 2 * v * np.cross(dx1, ddx2) *
                 (dv * np.dot(d, d) + v * np.dot(d, dx2))) / (2 * v**3)
        return np.dot(ddR1_, R1_) + np.dot(dR1_, dR1_)

    # find optimal intial start
    ninit = 20
    s2 = np.linspace(-1, 1, ninit)
    Rs2 = np.zeros_like(s2)
    for i in range(len(s2)):
        Rs2[i] = np.linalg.norm(R1(s2[i]))
    i_min = np.argmin(Rs2)
    try:
        sol = optimize.newton(f, x0=s2[i_min], fprime=fprime, tol=1e-15)
    except RuntimeError:
        print(s2[i_min])
        sol = 0
    s2 = sol
    x2 = (X2 @ intp.lagrange_polynomial(n_nodes_2 - 1, [s2])).flatten()
    R = R1(s2)
    return (s2, x2, R)
Exemple #13
0
def _spherical_point_projection(interpolation: str, X1: np.ndarray,
                                X2: np.ndarray, s1: float, s2_0: float,
                                TOLER: float, MAXITER: int) -> tuple:

    n_nodes_1 = len(X1[0])
    n_nodes_2 = len(X2[0])
    x1 = (X1 @ intp.lagrange_polynomial(n_nodes_1 - 1, [s1])).flatten()
    dx1 = (X1 @ intp.lagrange_polynomial_derivative(n_nodes_1 - 1,
                                                    [s1])).flatten()
    s2 = s2_0
    R = 1
    n = 0

    while abs(R) > TOLER and n < MAXITER:
        K = 0
        if interpolation == "Lagrange polynoms":
            x2 = (X2 @ intp.lagrange_polynomial(n_nodes_2 - 1, [s2])).flatten()
            dx2 = (X2 @ intp.lagrange_polynomial_derivative(
                n_nodes_2 - 1, [s2])).flatten()
            ddx2 = (X2 @ intp.lagrange_polynomial_2_derivative(
                n_nodes_2 - 1, [s2])).flatten()
            dddx2 = (X2 @ intp.lagrange_polynomial_2_derivative(
                n_nodes_2 - 1, [s2])).flatten()
            Ai = A_(x1, x2, dx1, dx2)
            dAi = dA_(x1, x2, dx1, dx2, ddx2)
            ddAi = ddA_(x1, x2, dx1, dx2, ddx2, dddx2)
            Bi = B_(x1, x2, dx1, dx2)
            dBi = dB_(x1, x2, dx1, dx2, ddx2)
            ddBi = ddB_(x1, x2, dx1, dx2, ddx2, dddx2)
            dRR = np.zeros(3)
            ddRR = np.ones(3)
            for i in range(3):
                if Bi[i] != 0:
                    dRR[i] = (dAi[i] * Ai[i] / Bi[i]**2 -
                              Ai[i]**2 * dBi[i] / Bi[i]**3)
                    ddRR[i] = (ddAi[i] * Ai[i] / Bi[i]**2 +
                               dAi[i]**2 / Bi[i]**2 -
                               2 * dAi[i] * Ai[i] * dBi[i] / Bi[i]**3 -
                               2 * Ai[i] * dAi[i] * dBi[i] / Bi[i]**3 -
                               Ai[i]**2 * ddBi[i] / Bi[i]**3 +
                               3 * Ai[i]**2 * dBi[i]**2 / Bi[i]**4)
            R = -(dRR).dot(dx1**2)
            K = (ddRR).dot(dx1**2)

        ds = R / K
        s2 += ds
        n += 1
    if n == MAXITER:
        return False
    x2 = (X2 @ intp.lagrange_polynomial(n_nodes_2 - 1, [s2])).flatten()
    dx2 = (X2 @ intp.lagrange_polynomial_derivative(n_nodes_2 - 1,
                                                    [s2])).flatten()
    ddx2 = (X2 @ intp.lagrange_polynomial_2_derivative(n_nodes_2 - 1,
                                                       [s2])).flatten()
    dddx2 = (X2 @ intp.lagrange_polynomial_2_derivative(n_nodes_2 - 1,
                                                        [s2])).flatten()
    Ai = A_(x1, x2, dx1, dx2)
    Bi = B_(x1, x2, dx1, dx2)
    R1 = np.zeros(3)
    for i in range(3):
        if Bi[i] != 0:
            R1[i] = Ai[i] / Bi[i] * dx1[i]
    return (s2, x2, R1)
Exemple #14
0
 def test_lagrange_polynomialnomial(self):
     correct = np.array([[0.195, -0.105], [0.91, 0.91], [-0.105, 0.195]])
     u = intp.lagrange_polynomial(degree=2, eval_pts=[-0.3, 0.3])
     self.assertTrue(np.allclose(u, correct, rtol=1e-10))
Exemple #15
0
    def __init__(self,
                 nodes,
                 mesh_dof_per_node: int,
                 ref_vec: np.ndarray,
                 coordinates: np.ndarray,
                 beam=None,
                 angular_velocities: np.ndarray = None,
                 angular_accelerations: np.ndarray = None,
                 distributed_load: np.ndarray = np.zeros(shape=(6)),
                 area: float = 1.0,
                 density: float = 0.0,
                 elastic_modulus: float = 1.0,
                 shear_modulus: float = 1.0,
                 inertia_primary: float = 1.0,
                 inertia_secondary: float = None,
                 inertia_torsion: float = None,
                 shear_coefficient: float = 1,
                 contact_radius: float = 1):
        # --------------------------------------------------------------
        # nodes
        dof = np.zeros(mesh_dof_per_node, dtype=np.bool)
        dof[:6] = True
        super().__init__(nodes, dof)

        # --------------------------------------------------------------
        # defualt values
        if angular_velocities is None:
            angular_velocities = np.zeros(shape=(3, self.n_nodes))
        if angular_accelerations is None:
            angular_accelerations = np.zeros(shape=(3, self.n_nodes))
        if inertia_secondary is None:
            inertia_secondary = inertia_primary
        if inertia_torsion is None:
            inertia_torsion = inertia_primary

        # --------------------------------------------------------------
        # displacement interpolation
        self.Ndis = [
            lambda x: intp.lagrange_polynomial(self.n_nodes - 1, x),
            lambda x: intp.lagrange_polynomial_derivative(self.n_nodes - 1, x),
            lambda x: intp.lagrange_polynomial_2_derivative(
                self.n_nodes - 1, x),
            lambda x: intp.lagrange_polynomial_3_derivative(
                self.n_nodes - 1, x)
        ]

        # rotation interpolation
        self.Nrot = [
            lambda x: intp.lagrange_polynomial(self.n_nodes - 1, x),
            lambda x: intp.lagrange_polynomial_derivative(self.n_nodes - 1, x),
            lambda x: intp.lagrange_polynomial_2_derivative(
                self.n_nodes - 1, x),
            lambda x: intp.lagrange_polynomial_3_derivative(
                self.n_nodes - 1, x)
        ]

        # integration points
        lgf = np.polynomial.legendre.leggauss(self.n_nodes)
        lgr = np.polynomial.legendre.leggauss(self.n_nodes - 1)
        self.int_pts = [
            struct.BeamIntegrationPoint(displacement_interpolation=self.Ndis,
                                        rotation_interpolation=self.Nrot,
                                        points_location=lgf[0],
                                        weights=lgf[1]),
            struct.BeamIntegrationPoint(displacement_interpolation=self.Ndis,
                                        rotation_interpolation=self.Nrot,
                                        points_location=lgr[0],
                                        weights=lgr[1])
        ]
        # Interpolation derivatives need to be corrected for
        #  isoparametric formulation (inverse of jacobian). This is
        #  done, when the element length is computed.

        # --------------------------------------------------------------
        # initial element length
        dxds = coordinates @ self.int_pts[1].dN_displacement
        intg = np.zeros(shape=(3))
        for i in range(len(intg)):
            intg[i] = np.dot(dxds[i], self.int_pts[1].wgt)
        L = np.linalg.norm(intg)
        self.jacobian = L / 2

        # --------------------------------------------------------------
        # initial rotation
        for i in range(len(self.int_pts)):
            self.int_pts[i].rot = np.zeros(shape=(3, 4, self.int_pts[i].n_pts))
            dx = 1 / self.jacobian * coordinates @ self.int_pts[
                i].dN_displacement
            for g in range(self.int_pts[i].n_pts):
                rotmat = np.zeros(shape=(3, 3))
                rotmat[:, 0] = math.normalized(dx[:, g])
                rotmat[:, 1] = math.normalized(np.cross(ref_vec, rotmat[:, 0]))
                rotmat[:, 2] = np.cross(rotmat[:, 0], rotmat[:, 1])
                self.int_pts[i].rot[:, :, g] = math.rotmat_to_quat(rotmat)

        # --------------------------------------------------------------
        # interpolate velocity, acceleration, load
        self.int_pts[0].w[2] = angular_velocities @ self.int_pts[0].N_rotation
        self.int_pts[0].a[
            2] = angular_accelerations @ self.int_pts[0].N_rotation
        self.int_pts[1].om[2] = np.zeros(shape=(3, self.int_pts[1].n_pts))
        self.int_pts[1].q[2] = np.tile(distributed_load,
                                       reps=(self.int_pts[1].n_pts, 1)).T

        # --------------------------------------------------------------
        # element properties
        self.prop = struct.BeamElementProperties(
            length=L,
            area=area,
            density=density,
            elastic_modulus=elastic_modulus,
            shear_modulus=shear_modulus,
            inertia_primary=inertia_primary,
            inertia_secondary=inertia_secondary,
            inertia_torsion=inertia_torsion,
            shear_coefficient=shear_coefficient,
            contact_radius=contact_radius)
Exemple #16
0
 def disp_shape_fun(int_points_locations):
     return intp.lagrange_polynomial(self.n_nodes - 1, int_points_locations)