def export_sequences(url: str,
                     keyfile: str,
                     output: str,
                     processes: int = 1,
                     tmpdir: Optional[str] = None):
    logger.info("starting")
    with Store(output, Store.load_keys(keyfile), tmpdir) as store:
        con = cx_Oracle.connect(url)
        cur = con.cursor()
        cur.execute("""
            SELECT /*+ PARALLEL */ UX.AC, UP.SEQ_SHORT, UP.SEQ_LONG
            FROM UNIPARC.XREF UX
            INNER JOIN UNIPARC.PROTEIN UP ON UX.UPI = UP.UPI
            WHERE UX.DBID IN (2, 3)
            AND UX.DELETED = 'N'
            """)

        i = 0
        for row in cur:
            store[row[0]] = row[2].read() if row[2] is not None else row[1]

            i += 1
            if not i % 1000000:
                store.sync()

                if not i % 10000000:
                    logger.info(f"{i:>12,}")

        cur.close()
        con.close()

        logger.info(f"{i:>12,}")
        size = store.merge(processes=processes)
        logger.info(f"temporary files: {size/1024/1024:.0f} MB")
def export_go(url: str,
              keyfile: str,
              output: str,
              processes: int = 1,
              tmpdir: Optional[str] = None):
    logger.info("starting")
    with Store(output, Store.load_keys(keyfile), tmpdir) as store:
        con = cx_Oracle.connect(url)
        cur = con.cursor()
        cur.execute("""
            SELECT CODE, SORT_ORDER, TERM_NAME
            FROM GO.CV_CATEGORIES@GOAPRO
            """)
        categories = {row[0]: row[1:] for row in cur}

        cur.execute("""
            SELECT E.ACCESSION, D.PRIMARY_ID, D.SECONDARY_ID, D.NOTE
            FROM SPTR.DBENTRY@SWPREAD E
            INNER JOIN SPTR.DBENTRY_2_DATABASE@SWPREAD D 
              ON E.DBENTRY_ID = D.DBENTRY_ID
            WHERE E.ENTRY_TYPE IN (0, 1)            -- Swiss-Prot and TrEMBL
              AND E.MERGE_STATUS != 'R'             -- not 'Redundant'
              AND E.DELETED = 'N'                   -- not deleted
              AND E.FIRST_PUBLIC IS NOT NULL        -- published
              AND D.DATABASE_ID = 'GO'              -- GO annotation
            """)

        i = 0
        for accession, go_id, sec_id, note in cur:
            # sec_id ->
            """
            sec_id -> cat_code:term_name, e.g.:
                C:integral component of membrane
                
            node -> go_evidence: source,e.g.:
                IEA:InterPro
            """
            cat_code, term_name = sec_id.split(':', 1)
            cat_order, cat_name = categories[cat_code]
            store.append(accession,
                         (cat_order, go_id, term_name, cat_code, cat_name))

            i += 1
            if not i % 1000000:
                store.sync()

                if not i % 10000000:
                    logger.info(f"{i:>12,}")

        cur.close()
        con.close()

        logger.info(f"{i:>12,}")
        size = store.merge(fn=_post_go, processes=processes)
        logger.info(f"temporary files: {size / 1024 / 1024:.0f} MB")
def export_name(url: str,
                keyfile: str,
                output: str,
                processes: int = 1,
                tmpdir: Optional[str] = None):
    logger.info("starting")
    with Store(output, Store.load_keys(keyfile), tmpdir) as store:
        con = cx_Oracle.connect(url)
        cur = con.cursor()
        cur.execute("""
            SELECT ACCESSION, DESCR
            FROM (
                SELECT
                  E.ACCESSION, 
                  D.DESCR, 
                  ROW_NUMBER() OVER (
                    PARTITION BY E.ACCESSION 
                    ORDER BY CV.DESC_ID,    -- 1=RecName, 2=AltName, 3=SubName
                             CV.ORDER_IN,   -- Swiss-Prot manual order
                             D.DESCR        -- TrEMBL alphabetic order
                  ) RN
                FROM SPTR.DBENTRY@SWPREAD E
                INNER JOIN SPTR.DBENTRY_2_DESC@SWPREAD D
                  ON E.DBENTRY_ID = D.DBENTRY_ID
                  AND D.DESC_ID IN (1,4,11,13,16,23,25,28,35)  --Full description section
                INNER JOIN SPTR.CV_DESC@SWPREAD CV
                  ON D.DESC_ID = CV.DESC_ID
                WHERE E.ENTRY_TYPE IN (0, 1)
                  AND E.MERGE_STATUS != 'R'
                  AND E.DELETED = 'N'
                  AND E.FIRST_PUBLIC IS NOT NULL
            )
            WHERE RN = 1
            """)

        i = 0
        for accession, description in cur:
            store[accession] = description

            i += 1
            if not i % 1000000:
                store.sync()

                if not i % 10000000:
                    logger.info(f"{i:>12,}")

        cur.close()
        con.close()

        logger.info(f"{i:>12,}")
        size = store.merge(processes=processes)
        logger.info(f"temporary files: {size/1024/1024:.0f} MB")
Exemple #4
0
def _write_match_tmp(signatures: dict, u2variants: dict, p_proteins: str,
                     p_uniprot2matches: str, start: str, stop: Optional[str],
                     output: str):
    proteins = Store(p_proteins)
    u2matches = Store(p_uniprot2matches)
    with open(output, "wt", encoding="utf-8") as fh:
        doc = getDOMImplementation().createDocument(None, None, None)

        for uniprot_acc, protein in proteins.range(start, stop):
            elem = doc.createElement("protein")
            elem.setAttribute("id", uniprot_acc)
            elem.setAttribute("name", protein["identifier"])
            elem.setAttribute("length", str(protein["length"]))
            elem.setAttribute("crc64", protein["crc64"])

            try:
                protein_entries = u2matches[uniprot_acc]
            except KeyError:
                pass
            else:
                for signature_acc in sorted(protein_entries):
                    try:
                        signature = signatures[signature_acc]
                    except KeyError:
                        # InterPro entry
                        continue

                    elem.appendChild(
                        _create_match(doc, signature,
                                      protein_entries[signature_acc]))
            finally:
                elem.writexml(fh, addindent="  ", newl="\n")

            protein_variants = u2variants.get(uniprot_acc, [])
            for variant, length, crc64, matches in protein_variants:
                elem = doc.createElement("protein")
                elem.setAttribute("id", variant)
                elem.setAttribute("name", variant)
                elem.setAttribute("length", str(length))
                elem.setAttribute("crc64", crc64)

                for signature_acc in sorted(matches):
                    try:
                        signature = signatures[signature_acc]
                    except KeyError:
                        # InterPro entry
                        continue

                    elem.appendChild(
                        _create_match(doc, signature, matches[signature_acc]))

                elem.writexml(fh, addindent="  ", newl="\n")
def export_proteome(url: str,
                    keyfile: str,
                    output: str,
                    processes: int = 1,
                    tmpdir: Optional[str] = None):
    logger.info("starting")
    with Store(output, Store.load_keys(keyfile), tmpdir) as store:
        con = cx_Oracle.connect(url)
        cur = con.cursor()
        """
        Without the DISTINCT, there would be duplicated rows, e.g.
        A0A059MHQ6  UP000024941
        A0A059MHQ6  UP000024941
        
        Even for duplicated rows, a given UniProt accession is associated
        to one unique UPID.
        
        It's just easier to remove the duplicates at the database level.
        """
        cur.execute("""
            SELECT DISTINCT E.ACCESSION, P.UPID
            FROM SPTR.DBENTRY@SWPREAD E
            INNER JOIN SPTR.PROTEOME2UNIPROT@SWPREAD P2U
              ON E.ACCESSION = P2U.ACCESSION AND E.TAX_ID = P2U.TAX_ID
            INNER JOIN SPTR.PROTEOME@SWPREAD P
              ON P2U.PROTEOME_ID = P.PROTEOME_ID
              AND P.IS_REFERENCE = 1
            WHERE E.ENTRY_TYPE IN (0, 1)
            AND E.MERGE_STATUS != 'R'
            AND E.DELETED = 'N'
            AND E.FIRST_PUBLIC IS NOT NULL
            """)

        i = 0
        for accession, upid in cur:
            store[accession] = upid

            i += 1
            if not i % 1000000:
                store.sync()

                if not i % 10000000:
                    logger.info(f"{i:>12,}")

        cur.close()
        con.close()

        logger.info(f"{i:>12,}")
        size = store.merge(processes=processes)
        logger.info(f"temporary files: {size/1024/1024:.0f} MB")
def export_evidence(url: str,
                    keyfile: str,
                    output: str,
                    processes: int = 1,
                    tmpdir: Optional[str] = None):
    logger.info("starting")
    with Store(output, Store.load_keys(keyfile), tmpdir) as store:
        con = cx_Oracle.connect(url)
        cur = con.cursor()
        cur.execute("""
            SELECT ACCESSION, PROTEIN_EXISTENCE_ID, NAME
            FROM (
              SELECT
                E.ACCESSION,
                E.PROTEIN_EXISTENCE_ID,
                GN.NAME,
                ROW_NUMBER() OVER (
                  PARTITION BY E.ACCESSION
                  ORDER BY GN.GENE_NAME_TYPE_ID
                ) RN
              FROM SPTR.DBENTRY@SWPREAD E
              LEFT OUTER JOIN SPTR.GENE@SWPREAD G
                ON E.DBENTRY_ID = G.DBENTRY_ID
              LEFT OUTER JOIN SPTR.GENE_NAME@SWPREAD GN
                ON G.GENE_ID = GN.GENE_ID
              WHERE E.ENTRY_TYPE IN (0, 1)
              AND E.MERGE_STATUS != 'R'
              AND E.DELETED = 'N'
              AND E.FIRST_PUBLIC IS NOT NULL
            )
            WHERE RN = 1
            """)

        i = 0
        for accession, evidence, gene in cur:
            store[accession] = (evidence, gene)

            i += 1
            if not i % 1000000:
                store.sync()

                if not i % 10000000:
                    logger.info(f"{i:>12,}")

        cur.close()
        con.close()

        logger.info(f"{i:>12,}")
        size = store.merge(processes=processes)
        logger.info(f"temporary files: {size/1024/1024:.0f} MB")
def export_features(url: str,
                    keyfile: str,
                    output: str,
                    processes: int = 1,
                    tmpdir: Optional[str] = None):
    logger.info("starting")
    with Store(output, Store.load_keys(keyfile), tmpdir) as store:
        con = cx_Oracle.connect(url)
        cur = con.cursor()
        cur.execute("""
            SELECT FM.PROTEIN_AC, FM.METHOD_AC, LOWER(DB.DBSHORT),
                   FM.POS_FROM, FM.POS_TO, FM.SEQ_FEATURE
            FROM INTERPRO.FEATURE_MATCH FM
            INNER JOIN INTERPRO.CV_DATABASE DB ON FM.DBCODE = DB.DBCODE
            """)

        i = 0
        for row in cur:
            protein_acc = row[0]
            signature_acc = row[1]
            database = row[2]
            pos_start = row[3]
            pos_end = row[4]
            seq_feature = row[5]

            if database == "mobidblt" and seq_feature is None:
                seq_feature = "Consensus Disorder Prediction"

            store.update(protein_acc, {
                signature_acc: {
                    "database": database,
                    "locations": [(pos_start, pos_end, seq_feature)]
                }
            },
                         replace=True)

            i += 1
            if not i % 1000000:
                store.sync()

                if not i % 100000000:
                    logger.info(f"{i:>13,}")

        cur.close()
        con.close()

        logger.info(f"{i:>13,}")
        size = store.merge(processes=processes)
        logger.info(f"temporary files: {size/1024/1024:.0f} MB")
def export_comments(url: str,
                    keyfile: str,
                    output: str,
                    processes: int = 1,
                    tmpdir: Optional[str] = None):
    logger.info("starting")
    with Store(output, Store.load_keys(keyfile), tmpdir) as store:
        con = cx_Oracle.connect(url)
        cur = con.cursor()
        """
        Note on the TEXT structure: 
        Some comments have a title (e.g. Q01299) which is not retrieved 
        when joining on CC_STRUCTURE_TYPE_ID = 1
        """
        cur.execute("""
            SELECT E.ACCESSION, B.ORDER_IN, NVL(B.TEXT, SS.TEXT)
            FROM SPTR.DBENTRY@SWPREAD E
            INNER JOIN SPTR.COMMENT_BLOCK@SWPREAD B
              ON E.DBENTRY_ID = B.DBENTRY_ID
              AND B.COMMENT_TOPICS_ID = 2        -- FUNCTION comments
            LEFT OUTER JOIN SPTR.COMMENT_STRUCTURE@SWPREAD S
              ON B.COMMENT_BLOCK_ID = S.COMMENT_BLOCK_ID
              AND S.CC_STRUCTURE_TYPE_ID = 1      -- TEXT structure
            LEFT OUTER JOIN SPTR.COMMENT_SUBSTRUCTURE@SWPREAD SS
              ON S.COMMENT_STRUCTURE_ID = SS.COMMENT_STRUCTURE_ID
            WHERE E.ENTRY_TYPE IN (0, 1)          -- Swiss-Prot and TrEMBL
              AND E.MERGE_STATUS != 'R'           -- not 'Redundant'
              AND E.DELETED = 'N'                 -- not deleted
              AND E.FIRST_PUBLIC IS NOT NULL      -- published
            """)

        i = 0
        for accession, block_number, text in cur:
            store.append(accession, (block_number, text))

            i += 1
            if not i % 1000000:
                store.sync()

                if not i % 10000000:
                    logger.info(f"{i:>12,}")

        cur.close()
        con.close()

        logger.info(f"{i:>12,}")
        size = store.merge(fn=_post_comments, processes=processes)
        logger.info(f"temporary files: {size/1024/1024:.0f} MB")
def chunk_proteins(url: str, keyfile: str, chunk_size: int = 50000):
    logger.info("loading")
    con = cx_Oracle.connect(url)
    cur = con.cursor()
    cur.execute("""
        SELECT PROTEIN_AC
        FROM INTERPRO.PROTEIN
        """)

    accessions = [acc for acc, in cur]
    cur.close()
    con.close()

    logger.info("splitting into chunks")
    Store.dump_keys(Store.chunk(accessions, chunk_size), keyfile)
    logger.info("complete")
Exemple #10
0
def _write_feature_tmp(features: dict, p_proteins: str,
                       p_uniprot2features: str, start: str,
                       stop: Optional[str], output: str):
    proteins = Store(p_proteins)
    u2features = Store(p_uniprot2features)

    with open(output, "wt", encoding="utf-8") as fh:
        doc = getDOMImplementation().createDocument(None, None, None)

        # for uniprot_acc, protein in proteins.range(start, stop):
        for uniprot_acc, protein_features in u2features.range(start, stop):
            protein = proteins[uniprot_acc]
            elem = doc.createElement("protein")
            elem.setAttribute("id", uniprot_acc)
            elem.setAttribute("name", protein["identifier"])
            elem.setAttribute("length", str(protein["length"]))
            elem.setAttribute("crc64", protein["crc64"])

            for feature_acc in sorted(protein_features):
                feature = features[feature_acc]
                feature_match = protein_features[feature_acc]

                match = doc.createElement("match")
                match.setAttribute("id", feature_acc)
                match.setAttribute("name", feature["name"])
                match.setAttribute("dbname", feature["database"])
                match.setAttribute("status", 'T')
                match.setAttribute("model", feature_acc)
                match.setAttribute("evd", feature["evidence"])

                for loc in sorted(feature_match["locations"]):
                    # there is only one fragment per location
                    pos_start, pos_end, seq_feature = loc

                    lcn = doc.createElement("lcn")
                    lcn.setAttribute("start", str(pos_start))
                    lcn.setAttribute("end", str(pos_end))

                    if seq_feature:
                        lcn.setAttribute("sequence-feature", seq_feature)

                    match.appendChild(lcn)

                elem.appendChild(match)

            elem.writexml(fh, addindent="  ", newl="\n")
def export_proteins(url: str,
                    keyfile: str,
                    output: str,
                    processes: int = 1,
                    tmpdir: Optional[str] = None):
    logger.info("starting")
    with Store(output, Store.load_keys(keyfile), tmpdir) as store:
        con = cx_Oracle.connect(url)
        cur = con.cursor()
        cur.execute("""
            SELECT 
              PROTEIN_AC, NAME, DBCODE, LEN, FRAGMENT, 
              TO_CHAR(TAX_ID), CRC64
            FROM INTERPRO.PROTEIN
            """)

        i = 0
        for row in cur:
            store[row[0]] = {
                "identifier": row[1],
                "reviewed": row[2] == 'S',
                "length": row[3],
                "fragment": row[4] == 'Y',
                "taxid": row[5],
                "crc64": row[6]
            }

            i += 1
            if not i % 1000000:
                store.sync()

                if not i % 10000000:
                    logger.info(f"{i:>12,}")

        cur.close()
        con.close()

        logger.info(f"{i:>12,}")
        size = store.merge(processes=processes)
        logger.info(f"temporary files: {size/1024/1024:.0f} MB")
def insert_extra_features(stg_url: str, p_uniprot2features: str):
    logger.info("starting")

    con = MySQLdb.connect(**url2dict(stg_url), charset="utf8mb4")
    cur = con.cursor()
    cur.execute("DROP TABLE IF EXISTS webfront_proteinfeature")
    cur.execute("""
        CREATE TABLE webfront_proteinfeature
        (
            feature_id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
            protein_acc VARCHAR(15) NOT NULL,
            entry_acc VARCHAR(25) NOT NULL,
            source_database VARCHAR(10) NOT NULL,
            location_start INT NOT NULL,
            location_end INT NOT NULL,
            sequence_feature VARCHAR(35)
        ) CHARSET=utf8mb4 DEFAULT COLLATE=utf8mb4_unicode_ci
        """)
    cur.close()

    sql = """
        INSERT INTO webfront_proteinfeature (
          protein_acc, entry_acc, source_database, location_start,
          location_end, sequence_feature
        )
        VALUES (%s, %s, %s, %s, %s, %s)
    """
    with Store(p_uniprot2features) as proteins, Table(con, sql) as table:
        i = 0
        for uniprot_acc, entries in proteins.items():
            for entry_acc, info in entries.items():
                for pos_start, pos_end, seq_feature in info["locations"]:
                    table.insert((uniprot_acc, entry_acc, info["database"],
                                  pos_start, pos_end, seq_feature))

            i += 1
            if not i % 10000000:
                logger.info(f"{i:>12,}")

        logger.info(f"{i:>12,}")
    con.commit()

    logger.info("indexing")
    cur = con.cursor()
    cur.execute("""
        CREATE INDEX i_proteinfeature
        ON webfront_proteinfeature (protein_acc)
        """)
    cur.close()
    con.close()
    logger.info("complete")
Exemple #13
0
def export_entries(url: str, p_metacyc: str, p_clans: str,
                   p_proteins: str, p_structures: str,
                   p_uniprot2matches: str, p_uniprot2proteome: str,
                   p_uniprot2ida: str, p_entry2xrefs: str, p_entries: str,
                   **kwargs):
    min_overlap = kwargs.get("overlap", 0.2)
    processes = kwargs.get("processes", 1)
    min_similarity = kwargs.get("similarity", 0.75)
    tmpdir = kwargs.get("tmpdir")

    con = cx_Oracle.connect(url)
    cur = con.cursor()

    entries = {}
    logger.info("loading active InterPro entries")
    for entry in _get_interpro_entries(cur):
        entries[entry.accession] = entry

    logger.info("enriching entries with IntAct data")
    for accession, interactions in intact.get_interactions(cur).items():
        try:
            entry = entries[accession]
        except KeyError:
            continue
        else:
            entry.ppi = interactions

    logger.info("loading deleted InterPro entries")
    for entry in _get_retired_interpro_entries(cur):
        if entry.accession in entries:
            cur.close()
            con.close()
            raise RuntimeError(f"entry cannot be active "
                               f"and deleted {entry.accession}")

        entries[entry.accession] = entry

    logger.info("loading member database signatures")
    for entry in _get_signatures(cur):
        if entry.integrated_in and entry.integrated_in not in entries:
            cur.close()
            con.close()
            raise RuntimeError(f"{entry.accession} integrated "
                               f"in missing entry ({entry.integrated_in})")

        entries[entry.accession] = entry

    logger.info("loading past entry names")
    past_names = _get_name_history(cur)

    logger.info("loading past signature integrations")
    past_integrations = _get_integration_history(cur)

    logger.info("loading ENZYME")
    u2enzyme = uniprot.get_swissprot2enzyme(cur)

    logger.info("loading Reactome pathways")
    u2reactome = uniprot.get_swissprot2reactome(cur)
    cur.close()
    con.close()

    logger.info("loading MetaCyc pathways")
    ec2metacyc = metacyc.get_ec2pathways(p_metacyc)

    # Updating entry history
    for entry in entries.values():
        try:
            names = past_names[entry.accession]
        except KeyError:
            pass
        else:
            entry.history["names"] = names

        try:
            signatures = past_integrations[entry.accession]
        except KeyError:
            pass
        else:
            entry.history["signatures"] = signatures

    # Updating entry clan info
    for clan in loadobj(p_clans).values():
        for entry_acc, score, seq_length in clan["members"]:
            try:
                entry = entries[entry_acc]
            except:
                continue
            else:
                entry.clan = {
                    "accession": clan["accession"],
                    "name": clan["name"]
                }

    inqueue = Queue(maxsize=processes)
    outqueue = Queue()
    workers = []
    for _ in range(max(1, processes - 1)):
        dt = DirectoryTree(tmpdir)
        p = Process(target=_process_proteins,
                    args=(inqueue, entries, min_overlap, dt, outqueue))
        p.start()
        workers.append((p, dt))

    logger.info("processing")
    uniprot2pdbe = {}
    for pdb_id, entry in loadobj(p_structures).items():
        for uniprot_acc, chains in entry["proteins"].items():
            try:
                uniprot2pdbe[uniprot_acc][pdb_id] = chains
            except KeyError:
                uniprot2pdbe[uniprot_acc] = {pdb_id: chains}

    proteins = Store(p_proteins)
    u2matches = Store(p_uniprot2matches)
    u2proteome = Store(p_uniprot2proteome)
    i = 0
    for uniprot_acc, matches in u2matches.items():
        inqueue.put((
            uniprot_acc,
            proteins[uniprot_acc],
            matches,
            u2proteome.get(uniprot_acc),
            uniprot2pdbe.get(uniprot_acc, {}),
            set(u2enzyme.get(uniprot_acc, [])),
            set(u2reactome.get(uniprot_acc, []))
        ))

        i += 1
        if not i % 10000000:
            logger.info(f"{i:>15,}")

    proteins.close()
    u2matches.close()
    u2proteome.close()
    logger.info(f"{i:>15,}")

    # Send sentinel
    for _ in workers:
        inqueue.put(None)

    # Merge results from workers
    logger.info("exporting domain architectures")
    entries_with_xrefs = set()
    xref_files = []
    entry_counts = {}
    entry_intersections = {}
    interpro2enzyme = {}
    interpro2reactome = {}
    with Store(p_uniprot2ida, u2matches.get_keys(), tmpdir) as u2ida:
        for _ in workers:
            obj = outqueue.get()
            xref_files.append(obj[0])                               # str
            entries_with_xrefs |= obj[1]                            # set
            ida_file = obj[2]                                       # str
            deepupdate(obj[3], entry_counts, replace=False)         # dict
            deepupdate(obj[4], entry_intersections, replace=False)  # dict
            deepupdate(obj[5], interpro2enzyme)                     # dict
            deepupdate(obj[6], interpro2reactome)                   # dict

            with DumpFile(ida_file) as df:
                i = 0
                for uniprot_acc, dom_members, dom_str, dom_id in df:
                    u2ida[uniprot_acc] = (
                        dom_members,
                        dom_str,
                        dom_id
                    )
                    i += 1

                    if not i % 1000:
                        u2ida.sync()

            u2ida.sync()

        size = u2ida.merge(processes=processes)

    # Adding empty EntryXrefs objects for entries without xrefs
    xref_files.append(workers[0][1].mktemp())
    with DumpFile(xref_files[-1], compress=True) as df:
        for entry_acc in sorted(set(entries.keys()) - entries_with_xrefs):
            df.dump((entry_acc, EntryXrefs().asdict()))

    logger.info("exporting cross-references")
    with DumpFile(p_entry2xrefs, compress=True) as df:
        for entry_acc, xrefs in merge_dumps(xref_files):
            df.dump((entry_acc, xrefs))

            entry = entries[entry_acc]

            # Reactome pathways
            if entry_acc in interpro2reactome:
                pathways = interpro2reactome[entry_acc]
                entry.pathways["reactome"] = [
                    dict(zip(("id", "name"), pthw))
                    for pthw in sorted(pathways)
                ]

            # EC numbers
            if entry_acc in interpro2enzyme:
                ecnos = sorted(interpro2enzyme[entry_acc])
                entry.cross_references["ec"] = ecnos

                # MetaCyc pathways
                pathways = set()
                for ecno in ecnos:
                    pathways |= set(ec2metacyc.get(ecno, []))

                if pathways:
                    entry.pathways["metacyc"] = [
                        dict(zip(("id", "name"), pthw))
                        for pthw in sorted(pathways)
                    ]

    for p, dt in workers:
        size += dt.size
        dt.remove()

    logger.info(f"temporary files: {size / 1024 / 1024:.0f} MB")

    logger.info("calculating overlapping relationships")
    supfam = "homologous_superfamily"
    types = (supfam, "domain", "family", "repeat")
    for entry_acc, overlaps in entry_intersections.items():
        entry1 = entries[entry_acc]
        entry_cnt = entry_counts[entry_acc]
        type1 = entry1.type.lower()

        for other_acc, overlap_counts in overlaps.items():
            o1 = overlap_counts["1"]
            o2 = overlap_counts["2"]
            other_cnt = entry_counts[other_acc]

            # Independent coefficients
            coef1 = o1 / (entry_cnt + other_cnt - o1)
            coef2 = o2 / (entry_cnt + other_cnt - o2)

            # Final coefficient: average of independent coefficients
            coef = (coef1 + coef2) * 0.5

            # Containment indices
            c1 = o1 / entry_cnt
            c2 = o2 / other_cnt

            if all([item < min_similarity for item in (coef, c1, c2)]):
                continue

            # Entries are similar enough
            entry2 = entries[other_acc]
            type2 = entry2.type.lower()
            if ((type1 == supfam and type2 in types)
                    or (type1 in types and type2 == supfam)):
                # e1 -> e2 relationship
                entry1.overlaps_with.append({
                    "accession": other_acc,
                    "name": entry2.name,
                    "type": type2
                })

                # e2 -> e1 relationship
                entry2.overlaps_with.append({
                    "accession": entry_acc,
                    "name": entry1.name,
                    "type": type1
                })

    dumpobj(p_entries, entries)

    logger.info("populating ENTRY2PATHWAY")
    con = cx_Oracle.connect(url)
    cur = con.cursor()
    cur.execute("TRUNCATE TABLE INTERPRO.ENTRY2PATHWAY")
    cur.close()
    sql = "INSERT INTO INTERPRO.ENTRY2PATHWAY VALUES (:1, :2, :3, :4)"
    with Table(con, sql) as table:
        for e in entries.values():
            for database, pathways in e.pathways.items():
                code = PATHWAY_DATABASE[database]
                for pthw in pathways:
                    table.insert((
                        e.accession,
                        code,
                        pthw["id"],
                        pthw["name"]
                    ))

    con.commit()
    con.close()
    logger.info("complete")
Exemple #14
0
def export_matches(pro_url: str,
                   stg_url: str,
                   p_proteins: str,
                   p_uniprot2matches: str,
                   outdir: str,
                   processes: int = 8):
    shutil.copy(os.path.join(os.path.dirname(__file__), "match_complete.dtd"),
                outdir)

    logger.info("loading isoforms")
    u2variants = {}
    for accession, variant in ippro.get_isoforms(pro_url).items():
        protein_acc = variant["protein_acc"]
        try:
            variants = u2variants[protein_acc]
        except KeyError:
            variants = u2variants[protein_acc] = []
        finally:
            variants.append((accession, variant["length"], variant["crc64"],
                             variant["matches"]))

    logger.info("loading signatures")
    con = cx_Oracle.connect(pro_url)
    cur = con.cursor()
    signatures = ippro.get_signatures(cur)
    cur.close()
    con.close()

    logger.info("spawning processes")
    processes = max(1, processes - 1)
    ctx = mp.get_context(method="spawn")
    workers = []
    with Store(p_proteins) as proteins:
        proteins_per_file = math.ceil(len(proteins) / processes)
        start_acc = None
        for i, uniprot_acc in enumerate(proteins):
            if not i % proteins_per_file:
                if start_acc:
                    filename = f"match_{len(workers)+1}.xml"
                    filepath = os.path.join(outdir, filename)
                    p = ctx.Process(target=_write_match_tmp,
                                    args=(signatures, u2variants, p_proteins,
                                          p_uniprot2matches, start_acc,
                                          uniprot_acc, filepath))
                    p.start()
                    workers.append((p, filepath))

                start_acc = uniprot_acc

        filename = f"match_{len(workers) + 1}.xml"
        filepath = os.path.join(outdir, filename)
        p = ctx.Process(target=_write_match_tmp,
                        args=(signatures, u2variants, p_proteins,
                              p_uniprot2matches, start_acc, None, filepath))
        p.start()
        workers.append((p, filepath))

    logger.info("concatenating XML files")
    con = MySQLdb.connect(**url2dict(stg_url), charset="utf8mb4")
    cur = con.cursor()
    cur.execute("""
        SELECT name, name_alt, type, num_entries, version, release_date
        FROM webfront_database
        ORDER BY name_long
        """)

    doc = getDOMImplementation().createDocument(None, None, None)
    elem = doc.createElement("release")
    for name, name_alt, db_type, entry_count, version, date in cur:
        if db_type == "entry":
            dbinfo = doc.createElement("dbinfo")
            dbinfo.setAttribute("dbname", name_alt)
            if version:
                dbinfo.setAttribute("version", version)
            if entry_count:
                dbinfo.setAttribute("entry_count", str(entry_count))
            if date:
                dbinfo.setAttribute("file_date",
                                    date.strftime("%d-%b-%y").upper())
            elem.appendChild(dbinfo)
    cur.close()
    con.close()

    output = os.path.join(outdir, "match_complete.xml.gz")
    with gzip.open(output, "wt", encoding="utf-8") as fh:
        fh.write('<?xml version="1.0" encoding="UTF-8"?>\n')
        fh.write('<!DOCTYPE interpromatch SYSTEM "match_complete.dtd">\n')
        fh.write('<interpromatch>\n')
        elem.writexml(fh, addindent="  ", newl="\n")

        for i, (p, filepath) in enumerate(workers):
            p.join()
            with open(filepath, "rt", encoding="utf-8") as tfh:
                for line in tfh:
                    fh.write(line)

            os.remove(filepath)
            logger.info(f"\t{i+1} / {len(workers)}")

        fh.write('</interpromatch>\n')

    logger.info("complete")
Exemple #15
0
def export_documents(src_proteins: str, src_entries: str, src_proteomes: str,
                     src_structures: str, src_taxonomy: str,
                     src_uniprot2ida: str, src_uniprot2matches: str,
                     src_uniprot2proteomes: str, outdirs: Sequence[str],
                     version: str, cache_size: int = 100000):
    logger.info("preparing data")
    os.umask(0o002)
    organizers = []
    for path in outdirs:
        try:
            shutil.rmtree(path)
        except FileNotFoundError:
            pass

        os.makedirs(path, mode=0o775)
        organizers.append(DirectoryTree(path))
        open(os.path.join(path, f"{version}{LOAD_SUFFIX}"), "w").close()

    logger.info("loading domain architectures")
    domains = {}
    with Store(src_uniprot2ida) as u2ida:
        for dom_members, dom_arch, dom_arch_id in u2ida.values():
            try:
                dom = domains[dom_arch_id]
            except KeyError:
                domains[dom_arch_id] = {
                    "ida_id": dom_arch_id,
                    "ida": dom_arch,
                    "counts": 1
                }
            else:
                dom["counts"] += 1

    logger.info("writing IDA documents")
    num_documents = 0
    domains = list(domains.values())
    for i in range(0, len(domains), cache_size):
        documents = []
        for dom in domains[i:i + cache_size]:
            documents.append((
                IDA_INDEX + version,
                dom["ida_id"],
                dom
            ))

        num_documents += len(documents)
        for org in organizers:
            filepath = org.mktemp()
            dumpobj(filepath, documents)
            os.rename(filepath, f"{filepath}{EXTENSION}")

    domains = None

    proteins = Store(src_proteins)
    uniprot2ida = Store(src_uniprot2ida)
    uniprot2matches = Store(src_uniprot2matches)
    uniprot2proteomes = Store(src_uniprot2proteomes)

    entries = loadobj(src_entries)  # mem: ~1.5 GB
    proteomes = loadobj(src_proteomes)  # mem: <1 GB
    structures = loadobj(src_structures)  # mem: ~ 4GB
    taxonomy = loadobj(src_taxonomy)  # mem: ~ 2.5GB

    uniprot2pdbe = {}  # mem: <1 GB
    for pdb_id, entry in structures.items():
        for uniprot_acc in entry["proteins"]:
            try:
                uniprot2pdbe[uniprot_acc].append(pdb_id)
            except KeyError:
                uniprot2pdbe[uniprot_acc] = [pdb_id]

    logger.info("writing relationship documents")
    i = 0
    documents = []
    used_entries = set()
    used_taxa = set()
    for uniprot_acc, info in proteins.items():
        taxid = info["taxid"]

        taxon = taxonomy[taxid]
        used_taxa.add(taxid)  # remember that this taxon has been used

        try:
            dom_members, dom_arch, dom_arch_id = uniprot2ida[uniprot_acc]
        except KeyError:
            dom_members = []
            dom_arch = dom_arch_id = None

        # Create an empty document (all properties set to None)
        doc = init_rel_doc()
        doc.update({
            "protein_acc": uniprot_acc.lower(),
            "protein_length": info["length"],
            "protein_is_fragment": info["fragment"],
            "protein_db": "reviewed" if info["reviewed"] else "unreviewed",
            "text_protein": join(uniprot_acc, info["identifier"]),

            # Taxonomy
            "tax_id": taxid,
            "tax_name": taxon["sci_name"],
            "tax_lineage": taxon["lineage"],
            "tax_rank": taxon["rank"],
            "text_taxonomy": join(taxid, taxon["full_name"], taxon["rank"])
        })

        proteome_id = uniprot2proteomes.get(uniprot_acc)
        if proteome_id:
            proteome = proteomes[proteome_id]
            doc.update({
                "proteome_acc": proteome_id.lower(),
                "proteome_name": proteome["name"],
                "proteome_is_reference": proteome["is_reference"],
                "text_proteome": join(proteome_id,
                                      proteome["name"],
                                      proteome["assembly"],
                                      proteome["taxon_id"],
                                      proteome["strain"]),
            })

        # Adding PDBe structures/chains
        pdb_chains = {}  # mapping PDB-chain ID -> chain segments
        pdb_documents = {}  # mapping PDB-chain ID -> ES document
        for pdb_id in uniprot2pdbe.get(uniprot_acc, []):
            pdb_entry = structures[pdb_id]
            chains = pdb_entry["proteins"][uniprot_acc]

            pdb_doc = doc.copy()
            pdb_doc.update({
                "structure_acc": pdb_id.lower(),
                "structure_resolution": pdb_entry["resolution"],
                "structure_date": pdb_entry["date"],
                "structure_evidence": pdb_entry["evidence"],
                "protein_structure": chains,
                "text_structure": join(pdb_id,
                                       pdb_entry["evidence"],
                                       pdb_entry["name"])
            })

            for chain_id, segments in chains.items():
                pdb_chain_id = f"{pdb_id}-{chain_id}"

                locations = []
                for segment in segments:
                    locations.append({
                        "fragments": [{
                            "start": segment["protein_start"],
                            "end": segment["protein_end"],
                        }]
                    })

                chain_doc = pdb_doc.copy()
                chain_doc.update({
                    "structure_chain_acc": chain_id,
                    "structure_protein_locations": locations,
                    "structure_chain": pdb_chain_id
                })

                pdb_documents[pdb_chain_id] = chain_doc
                pdb_chains[pdb_chain_id] = segments

        # Adding entries
        overlapping_chains = set()  # chains associated to at least one entry
        matches = uniprot2matches.get(uniprot_acc, {})
        num_protein_docs = 0
        for entry_acc, locations in matches.items():
            used_entries.add(entry_acc)  # this entry has been used
            entry = entries[entry_acc]
            if entry.integrated_in:
                interpro_acc = entry.integrated_in.lower()
            else:
                interpro_acc = None

            entry_obj = {
                "entry_acc": entry_acc.lower(),
                "entry_db": entry.database,
                "entry_type": entry.type.lower(),
                "entry_date": entry.creation_date.strftime("%Y-%m-%d"),
                "entry_protein_locations": locations,
                "entry_go_terms": [t["identifier"] for t in entry.go_terms],
                "entry_integrated": interpro_acc,
                "text_entry": join(entry_acc, entry.short_name, entry.name,
                                   entry.type.lower(), interpro_acc),
            }

            if entry.clan:
                entry_obj.update({
                    "set_acc": entry.clan["accession"].lower(),
                    "set_db": entry.database,
                    "text_set": join(entry.clan["accession"],
                                     entry.clan["name"]),
                })

            if entry_acc in dom_members:
                entry_obj.update({
                    "ida_id": dom_arch_id,
                    "ida": dom_arch,
                })

            # Test if the entry overlaps PDB chains
            entry_chains = set()
            for pdb_chain_id, segments in pdb_chains.items():
                if overlaps_pdb_chain(locations, segments):
                    # Entry overlaps chain: associate entry to struct/chain
                    chain_doc = pdb_documents[pdb_chain_id]
                    entry_doc = chain_doc.copy()
                    entry_doc.update(entry_obj)

                    documents.append((
                        entry.database + version,
                        get_rel_doc_id(entry_doc),
                        entry_doc
                    ))

                    entry_chains.add(pdb_chain_id)
                    num_protein_docs += 1

            if entry_chains:
                # Entry overlaps at least one chain
                overlapping_chains |= entry_chains
            else:
                # Associate entry to protein directly
                entry_doc = doc.copy()
                entry_doc.update(entry_obj)
                documents.append((
                    entry.database + version,
                    get_rel_doc_id(entry_doc),
                    entry_doc
                ))
                num_protein_docs += 1

        # Add chains not overlapping any entry
        for chain_id, chain_doc in pdb_documents.items():
            if chain_id in overlapping_chains:
                continue

            chain_doc.update({
                "ida_id": dom_arch_id,
                "ida": dom_arch,
            })

            documents.append((
                # Not overlapping any entry -> not associated to a member DB
                REL_INDEX + version,
                get_rel_doc_id(chain_doc),
                chain_doc
            ))
            num_protein_docs += 1

        if not num_protein_docs:
            # No relationships for this protein: fallback to protein doc
            documents.append((
                REL_INDEX + version,
                get_rel_doc_id(doc),
                doc
            ))

        while len(documents) >= cache_size:
            for org in organizers:
                filepath = org.mktemp()
                dumpobj(filepath, documents[:cache_size])
                os.rename(filepath, f"{filepath}{EXTENSION}")

            del documents[:cache_size]
            num_documents += cache_size

        i += 1
        if not i % 10000000:
            logger.info(f"{i:>12,}")

    logger.info(f"{i:>12,}")

    logger.info("writing remaining documents")
    # Add unused entries
    for entry in entries.values():
        if entry.accession in used_entries or entry.is_deleted:
            continue

        if entry.integrated_in:
            interpro_acc = entry.integrated_in.lower()
        else:
            interpro_acc = None

        doc = init_rel_doc()
        doc.update({
            "entry_acc": entry.accession.lower(),
            "entry_db": entry.database,
            "entry_type": entry.type.lower(),
            "entry_date": entry.creation_date.strftime("%Y-%m-%d"),
            "entry_protein_locations": [],
            "entry_go_terms": [t["identifier"] for t in entry.go_terms],
            "entry_integrated": interpro_acc,
            "text_entry": join(entry.accession, entry.short_name, entry.name,
                               entry.type.lower(), interpro_acc),
        })

        if entry.clan:
            doc.update({
                "set_acc": entry.clan["accession"].lower(),
                "set_db": entry.database,
                "text_set": join(entry.clan["accession"],
                                 entry.clan["name"]),
            })

        documents.append((
            entry.database + version,
            get_rel_doc_id(doc),
            doc
        ))

    # Add unused taxa
    for taxon in taxonomy.values():
        if taxon["id"] in used_taxa:
            continue

        doc = init_rel_doc()
        doc.update({
            "tax_id": taxon["id"],
            "tax_name": taxon["full_name"],
            "tax_lineage": taxon["lineage"],
            "tax_rank": taxon["rank"],
            "text_taxonomy": join(taxon["id"], taxon["full_name"],
                                  taxon["rank"])
        })

        documents.append((
            REL_INDEX + version,
            get_rel_doc_id(doc),
            doc
        ))

    num_documents += len(documents)
    while documents:
        for org in organizers:
            filepath = org.mktemp()
            dumpobj(filepath, documents[:cache_size])
            os.rename(filepath, f"{filepath}{EXTENSION}")

        del documents[:cache_size]

    proteins.close()
    uniprot2ida.close()
    uniprot2matches.close()
    uniprot2proteomes.close()

    for path in outdirs:
        open(os.path.join(path, f"{version}{DONE_SUFFIX}"), "w").close()

    logger.info(f"complete ({num_documents:,} documents)")
def export_matches(url: str,
                   keyfile: str,
                   output: str,
                   processes: int = 1,
                   tmpdir: Optional[str] = None):
    logger.info("starting")
    with Store(output, Store.load_keys(keyfile), tmpdir) as store:
        con = cx_Oracle.connect(url)
        cur = con.cursor()
        cur.execute("""
            SELECT M.PROTEIN_AC, M.METHOD_AC, M.MODEL_AC, M.POS_FROM, 
                   M.POS_TO, M.FRAGMENTS, M.SCORE, E.ENTRY_AC
            FROM INTERPRO.MATCH M
            LEFT OUTER JOIN (
              SELECT E.ENTRY_AC, EM.METHOD_AC
              FROM INTERPRO.ENTRY E
              INNER JOIN INTERPRO.ENTRY2METHOD EM
                ON E.ENTRY_AC = EM.ENTRY_AC
              WHERE E.CHECKED = 'Y'
            ) E ON M.METHOD_AC = E.METHOD_AC
            """)

        i = 0
        for row in cur:
            if row[5]:
                fragments = []
                for frag in row[5].split(','):
                    # Format: START-END-STATUS
                    s, e, t = frag.split('-')
                    fragments.append({
                        "start": int(s),
                        "end": int(e),
                        "dc-status": DC_STATUSES[t]
                    })
            else:
                fragments = [{
                    "start": row[3],
                    "end": row[4],
                    "dc-status": DC_STATUSES['S']  # Continuous
                }]

            store.append(
                row[0],
                (
                    row[1],  # signature
                    row[2],  # model
                    row[6],  # score
                    fragments,
                    row[7]  # InterPro entry
                ))

            i += 1
            if not i % 1000000:
                store.sync()

                if not i % 100000000:
                    logger.info(f"{i:>13,}")

        cur.close()
        con.close()

        logger.info(f"{i:>13,}")
        size = store.merge(fn=_post_matches, processes=processes)
        logger.info(f"temporary files: {size/1024/1024:.0f} MB")
Exemple #17
0
def export_matches(url: str,
                   outdir: str,
                   tmpdir: Optional[str] = None,
                   processes: int = 8,
                   proteins_per_file: int = 1000000):
    fd, proteins_file = mkstemp(dir=tmpdir)
    os.close(fd)
    os.remove(proteins_file)

    logger.info("exporting UniParc proteins")
    con = cx_Oracle.connect(url)
    cur = con.cursor()
    keys = []
    with KVdb(proteins_file, writeback=True) as kvdb:
        cur.execute("""
            SELECT UPI, LEN, CRC64
            FROM UNIPARC.PROTEIN
            ORDER BY UPI
            """)
        for i, (upi, length, crc64) in enumerate(cur):
            kvdb[upi] = (length, crc64)
            if not i % 1e6:
                kvdb.sync()

            if not i % 1e4:
                keys.append(upi)

        kvdb.sync()

    logger.info("exporting UniParc matches")
    fd, matches_file = mkstemp(dir=outdir)
    os.close(fd)
    with Store(matches_file, keys, tmpdir) as store:
        cur.execute("""
            SELECT MA.UPI, MA.METHOD_AC, MA.MODEL_AC,
                   MA.SEQ_START, MA.SEQ_END, MA.SCORE, MA.SEQ_FEATURE,
                   MA.FRAGMENTS
            FROM IPRSCAN.MV_IPRSCAN MA
            INNER JOIN INTERPRO.METHOD ME
              ON MA.METHOD_AC = ME.METHOD_AC
            """)

        i = 0
        for row in cur:
            store.append(row[0], row[1:])

            i += 1
            if not i % 1e6:
                store.sync()

                if not i % 1e9:
                    logger.info(f"{i:>15,}")

        logger.info(f"{i:>15,}")
        size = store.merge(fn=merge_matches, processes=processes)

    logger.info("loading signatures")
    signatures = ippro.get_signatures(cur)
    cur.close()
    con.close()

    logger.info("spawning processes")
    ctx = mp.get_context(method="spawn")
    inqueue = ctx.Queue()
    outqueue = ctx.Queue()
    workers = []
    for _ in range(max(1, processes - 1)):
        p = ctx.Process(target=dump_proteins,
                        args=(proteins_file, matches_file, signatures, inqueue,
                              outqueue))
        p.start()
        workers.append(p)

    with Store(matches_file) as store:
        num_files = 0

        i = 0
        from_upi = None
        for upi in store:
            i += 1
            if not i % 1e8:
                logger.info(f"{i:>15,}")

            if i % proteins_per_file == 1:
                if from_upi:
                    num_files += 1
                    filename = f"uniparc_match_{num_files}.dump"
                    filepath = os.path.join(outdir, filename)
                    inqueue.put((from_upi, upi, filepath))

                from_upi = upi

        num_files += 1
        filename = f"uniparc_match_{num_files}.dump"
        filepath = os.path.join(outdir, filename)
        inqueue.put((from_upi, None, filepath))
        logger.info(f"{i:>15,}")

    for _ in workers:
        inqueue.put(None)

    logger.info("creating XML archive")
    output = os.path.join(outdir, "uniparc_match.tar.gz")
    with tarfile.open(output, "w:gz") as fh:
        for i in range(num_files):
            filepath = outqueue.get()
            fh.add(filepath, arcname=os.path.basename(filepath))
            os.remove(filepath)
            logger.info(f"{i+1:>6}/{num_files}")

    for p in workers:
        p.join()

    size += os.path.getsize(proteins_file)
    os.remove(proteins_file)
    os.remove(matches_file)
    logger.info(f"temporary files: {size/1024**2:.0f} MB")
    logger.info("complete")
Exemple #18
0
def dump_proteins(proteins_file: str, matches_file: str, signatures: dict,
                  inqueue: mp.Queue, outqueue: mp.Queue):
    doc = getDOMImplementation().createDocument(None, None, None)
    with KVdb(proteins_file) as kvdb, Store(matches_file) as store:
        for from_upi, to_upi, filepath in iter(inqueue.get, None):
            with open(filepath, "wt") as fh:
                fh.write('<?xml version="1.0" encoding="UTF-8"?>\n')
                for upi, matches in store.range(from_upi, to_upi):
                    try:
                        length, crc64 = kvdb[upi]
                    except KeyError:
                        """
                        This may happen because UNIPARC.PROTEIN is refreshed 
                        using IPREAD while match data come from ISPRO, 
                        which uses UAPRO  (more up-to-date than UAREAD)
                        """
                        continue

                    protein = doc.createElement("protein")
                    protein.setAttribute("id", upi)
                    protein.setAttribute("length", str(length))
                    protein.setAttribute("crc64", crc64)

                    for signature_acc, model, locations in matches:
                        signature = signatures[signature_acc]

                        match = doc.createElement("match")
                        match.setAttribute("id", signature_acc)
                        match.setAttribute("name", signature["name"])
                        match.setAttribute("dbname", signature["database"])
                        match.setAttribute("status", 'T')
                        match.setAttribute("evd", signature["evidence"])
                        match.setAttribute("model", model)

                        if signature["interpro"]:
                            ipr = doc.createElement("ipr")
                            for attname, value in signature["interpro"]:
                                if value:
                                    ipr.setAttribute(attname, value)

                            match.appendChild(ipr)

                        for start, end, score, aln, frags in locations:
                            lcn = doc.createElement("lcn")
                            lcn.setAttribute("start", str(start))
                            lcn.setAttribute("end", str(end))

                            if frags:
                                lcn.setAttribute("fragments", frags)

                            if aln:
                                lcn.setAttribute("alignment", aln)

                            lcn.setAttribute("score", str(score))
                            match.appendChild(lcn)

                        protein.appendChild(match)

                    protein.writexml(fh, addindent="  ", newl="\n")

            outqueue.put(filepath)
Exemple #19
0
def insert_taxonomy(p_entries: str,
                    p_proteins: str,
                    p_structures: str,
                    p_taxonomy: str,
                    p_uniprot2matches: str,
                    p_uniprot2proteome: str,
                    stg_url: str,
                    p_interpro2taxonomy: str,
                    tmpdir: Optional[str] = None):
    logger.info("preparing data")
    dt = DirectoryTree(tmpdir)
    entries = loadobj(p_entries)
    taxonomy = loadobj(p_taxonomy)
    uniprot2pdbe = {}
    for pdb_id, entry in loadobj(p_structures).items():
        for uniprot_acc, chains in entry["proteins"].items():
            try:
                uniprot2pdbe[uniprot_acc][pdb_id] = chains
            except KeyError:
                uniprot2pdbe[uniprot_acc] = {pdb_id: chains}

    proteins = Store(p_proteins)
    u2matches = Store(p_uniprot2matches)
    u2proteome = Store(p_uniprot2proteome)

    logger.info("starting")
    i = 0
    xrefs = {}
    files = []
    for uniprot_acc, info in proteins.items():
        taxon_id = info["taxid"]

        try:
            taxon = xrefs[taxon_id]
        except KeyError:
            taxon = xrefs[taxon_id] = init_xrefs()

        try:
            proteome_id = u2proteome[uniprot_acc]
        except KeyError:
            pass
        else:
            taxon["proteomes"].add(proteome_id)

        taxon["proteins"]["all"] += 1

        protein_structures = uniprot2pdbe.get(uniprot_acc, {})

        # Add structures to taxon, regardless of entry matches
        taxon["structures"]["all"] |= set(protein_structures.keys())

        databases = set()
        for entry_acc, locations in u2matches.get(uniprot_acc, {}).items():
            entry = entries[entry_acc]
            database = entry.database

            try:
                taxon["entries"][database].add(entry_acc)
            except KeyError:
                taxon["entries"][database] = {entry_acc}

            if database not in databases:
                # Counting the protein *once* per database
                databases.add(database)
                try:
                    taxon["proteins"]["databases"][database] += 1
                except KeyError:
                    taxon["proteins"]["databases"][database] = 1

            try:
                taxon["proteins"]["entries"][entry_acc] += 1
            except KeyError:
                taxon["proteins"]["entries"][entry_acc] = 1

            for pdb_id, chains in protein_structures.items():
                for chain_id, segments in chains.items():
                    if overlaps_pdb_chain(locations, segments):
                        try:
                            taxon["structures"]["entries"][entry_acc].add(
                                pdb_id)
                        except KeyError:
                            taxon["structures"]["entries"][entry_acc] = {
                                pdb_id
                            }

                        break  # Skip other chains

        i += 1
        if not i % 1000000:
            output = dt.mktemp()
            dump_xrefs(xrefs, taxonomy, output)
            files.append(output)
            xrefs = {}

            if not i % 10000000:
                logger.info(f"{i:>12,}")

    if xrefs:
        output = dt.mktemp()
        dump_xrefs(xrefs, taxonomy, output)
        files.append(output)
        xrefs = {}

    logger.info(f"{i:>12,}")
    logger.info(f"temporary files: "
                f"{sum(map(os.path.getsize, files))/1024/1024:.0f} MB")

    proteins.close()
    u2matches.close()
    u2proteome.close()

    logger.info("populating taxonomy tables")
    con = MySQLdb.connect(**url2dict(stg_url), charset="utf8mb4")
    cur = con.cursor()
    cur.execute("DROP TABLE IF EXISTS webfront_taxonomy")
    cur.execute("""
        CREATE TABLE webfront_taxonomy
        (
            accession VARCHAR(20) PRIMARY KEY NOT NULL,
            scientific_name VARCHAR(255) NOT NULL,
            full_name VARCHAR(512) NOT NULL,
            lineage LONGTEXT NOT NULL,
            parent_id VARCHAR(20),
            rank VARCHAR(20) NOT NULL,
            children LONGTEXT,
            counts LONGTEXT NOT NULL
        ) CHARSET=utf8mb4 DEFAULT COLLATE=utf8mb4_unicode_ci
        """)
    cur.execute("DROP TABLE IF EXISTS webfront_taxonomyperentry")
    cur.execute("""
        CREATE TABLE webfront_taxonomyperentry
        (
          id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
          tax_id VARCHAR(20) NOT NULL,
          entry_acc VARCHAR(25) NOT NULL,
          counts LONGTEXT NULL NULL
        ) CHARSET=utf8mb4 DEFAULT COLLATE=utf8mb4_unicode_ci
        """)
    cur.execute("DROP TABLE IF EXISTS webfront_taxonomyperentrydb")
    cur.execute("""
        CREATE TABLE webfront_taxonomyperentrydb
        (
          id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
          tax_id VARCHAR(20) NOT NULL,
          source_database VARCHAR(10) NOT NULL,
          counts LONGTEXT NOT NULL
        ) CHARSET=utf8mb4 DEFAULT COLLATE=utf8mb4_unicode_ci
        """)
    cur.close()

    table = Table(con,
                  query="""
        INSERT INTO webfront_taxonomy VALUES (%s, %s, %s, %s, %s, %s, %s, %s) 
    """)
    per_entry = Table(con,
                      query="""
        INSERT INTO webfront_taxonomyperentry (tax_id,entry_acc,counts)
        VALUES (%s, %s, %s) 
    """)
    per_database = Table(con,
                         query="""
        INSERT INTO webfront_taxonomyperentrydb (tax_id,source_database,counts)
        VALUES (%s, %s, %s) 
    """)

    with DumpFile(p_interpro2taxonomy, compress=True) as interpro2taxonomy:
        interpro_entries = {
            entry.accession
            for entry in entries.values()
            if entry.database == "interpro" and not entry.is_deleted
        }

        i = 0
        for taxon_id, taxon_xrefs in merge_dumps(files):
            taxon = taxonomy[taxon_id]

            protein_counts = taxon_xrefs.pop("proteins")
            structure_counts = taxon_xrefs.pop("structures")
            counts = reduce(taxon_xrefs)

            # Add total protein count (not grouped by database/entry)
            counts["proteins"] = protein_counts["all"]

            # Add total structure count
            counts["structures"] = len(structure_counts["all"])

            # Add total entry count (not grouped by database)
            counts["entries"]["total"] = sum(counts["entries"].values())

            table.insert(
                (taxon_id, taxon["sci_name"], taxon["full_name"],
                 f" {' '.join(taxon['lineage'])} ", taxon["parent"],
                 taxon["rank"], jsonify(taxon["children"]), jsonify(counts)))

            # Remove the 'entry' property
            # (no needed for webfront_taxonomyperentry)
            entry_counts = counts.pop("entries")

            database_structures = {}
            for entry_acc, count in protein_counts["entries"].items():
                if entry_acc in interpro_entries:
                    interpro2taxonomy.dump((entry_acc, taxon_id, count))

                counts["proteins"] = count

                try:
                    entry_structures = structure_counts["entries"][entry_acc]
                except KeyError:
                    counts["structures"] = 0
                else:
                    counts["structures"] = len(entry_structures)

                    database = entries[entry_acc].database
                    try:
                        database_structures[database] |= entry_structures
                    except KeyError:
                        database_structures[database] = entry_structures.copy()
                finally:
                    per_entry.insert((taxon_id, entry_acc, jsonify(counts)))

            for database, count in protein_counts["databases"].items():
                counts.update({
                    "entries":
                    entry_counts[database],
                    "proteins":
                    count,
                    "structures":
                    len(database_structures.get(database, []))
                })
                per_database.insert((taxon_id, database, jsonify(counts)))

            i += 1
            if not i % 100000:
                logger.info(f"{i:>12,}")

        logger.info(f"{i:>12,}")

    table.close()
    per_entry.close()
    per_database.close()
    con.commit()

    dt.remove()

    logger.info("indexing")
    cur = con.cursor()
    cur.execute("""
        CREATE INDEX i_webfront_taxonomyperentry_tax
        ON webfront_taxonomyperentry (tax_id)
        """)
    cur.execute("""
        CREATE INDEX i_webfront_taxonomyperentry_entry
        ON webfront_taxonomyperentry (entry_acc)
        """)
    cur.execute("""
        CREATE INDEX i_webfront_taxonomyperentrydb_tax
        ON webfront_taxonomyperentrydb (tax_id)
        """)
    cur.execute("""
        CREATE INDEX i_webfront_taxonomyperentrydb_database
        ON webfront_taxonomyperentrydb (source_database)
        """)
    cur.close()
    con.close()
    logger.info("complete")
def insert_proteomes(p_entries: str, p_proteins: str, p_proteomes: str,
                     p_structures: str, p_uniprot2ida: str,
                     p_uniprot2matches: str, p_uniprot2proteome: str,
                     stg_url: str):
    logger.info("preparing data")
    proteomes = loadobj(p_proteomes)
    uniprot2pdbe = {}
    for pdb_id, entry in loadobj(p_structures).items():
        for uniprot_acc in entry["proteins"]:
            try:
                uniprot2pdbe[uniprot_acc].add(pdb_id)
            except KeyError:
                uniprot2pdbe[uniprot_acc] = {pdb_id}

    # Init all proteomes
    xrefs = {}
    for proteome_id in proteomes:
        xrefs[proteome_id] = {
            "domain_architectures": set(),
            "entries": {},
            "proteins": 0,
            "sets": set(),
            "structures": set(),
            "taxa": set()
        }

    entries = loadobj(p_entries)
    proteins = Store(p_proteins)
    u2ida = Store(p_uniprot2ida)
    u2matches = Store(p_uniprot2matches)
    u2proteome = Store(p_uniprot2proteome)

    logger.info("starting")
    i = 0
    for uniprot_acc, proteome_id in u2proteome.items():
        proteome = xrefs[proteome_id]
        proteome["proteins"] += 1

        info = proteins[uniprot_acc]
        proteome["taxa"].add(info["taxid"])

        try:
            dom_members, dom_arch, dom_arch_id = u2ida[uniprot_acc]
        except KeyError:
            pass
        else:
            proteome["domain_architectures"].add(dom_arch_id)

        for entry_acc in u2matches.get(uniprot_acc, []):
            entry = entries[entry_acc]
            try:
                proteome["entries"][entry.database].add(entry_acc)
            except KeyError:
                proteome["entries"][entry.database] = {entry_acc}

            if entry.clan:
                proteome["sets"].add(entry.clan["accession"])

        try:
            pdb_ids = uniprot2pdbe[uniprot_acc]
        except KeyError:
            pass
        else:
            proteome["structures"] |= pdb_ids

        i += 1
        if not i % 10000000:
            logger.info(f"{i:>12,}")

    logger.info(f"{i:>12,}")

    proteins.close()
    u2ida.close()
    u2matches.close()
    u2proteome.close()

    con = MySQLdb.connect(**url2dict(stg_url), charset="utf8mb4")
    cur = con.cursor()
    cur.execute("DROP TABLE IF EXISTS webfront_proteome")
    cur.execute("""
        CREATE TABLE webfront_proteome
        (
            accession VARCHAR(20) PRIMARY KEY NOT NULL,
            name VARCHAR(215) NOT NULL,
            is_reference TINYINT NOT NULL,
            strain VARCHAR(512),
            assembly VARCHAR(512),
            taxonomy_id VARCHAR(20) NOT NULL,
            counts LONGTEXT NOT NULL
        ) CHARSET=utf8mb4 DEFAULT COLLATE=utf8mb4_unicode_ci
        """)
    cur.close()

    sql = """
        INSERT INTO webfront_proteome VALUES (%s, %s, %s, %s, %s, %s, %s) 
    """
    with Table(con, sql) as table:
        for proteome_id, info in proteomes.items():
            counts = reduce(xrefs[proteome_id])
            counts["entries"]["total"] = sum(counts["entries"].values())
            table.insert(
                (proteome_id, info["name"], 1 if info["is_reference"] else 0,
                 info["strain"], info["assembly"], info["taxon_id"],
                 jsonify(counts)))

    con.commit()
    con.close()

    logger.info("complete")
def _export_hmms(p_uniprot2matches: str,
                 pro_url: str,
                 dt: DirectoryTree,
                 buffer_size: int = 1000):
    logger.info("counting hits per model")
    signatures = {}
    with Store(p_uniprot2matches) as u2matches:
        cnt = 0
        for entries in u2matches.values():
            for entry_acc, locations in entries.items():
                for loc in locations:
                    if loc["model"] is None:
                        continue  # InterPro entries

                    try:
                        models = signatures[entry_acc]
                    except KeyError:
                        models = signatures[entry_acc] = {}

                    try:
                        models[loc["model"]] += 1
                    except KeyError:
                        models[loc["model"]] = 1

            cnt += 1
            if not cnt % 10e6:
                logger.info(f"{cnt:>12,}")

        logger.info(f"{cnt:>12,}")

    for entry_acc, models in signatures.items():
        # Select the model with the most hits
        model_acc = sorted(models, key=lambda k: (-models[k], k))[0]
        signatures[entry_acc] = model_acc

    logger.info("processing models")
    df = DumpFile(dt.mktemp(), compress=True)
    cnt = 0
    ignored = 0

    iterator = ippro.get_hmms(pro_url, multi_models=True)
    for entry_acc, model_acc, hmm_bytes in iterator:
        try:
            representative_model = signatures[entry_acc]
        except KeyError:
            # Signature without matches, i.e. without representative model
            ignored += 1
            continue

        if model_acc and model_acc != representative_model:
            continue

        hmm_str = gzip.decompress(hmm_bytes).decode("utf-8")
        df.dump((entry_acc, "hmm", hmm_bytes, "application/gzip", None))

        with StringIO(hmm_str) as stream:
            hmm = hmmer.HMMFile(stream)

        df.dump((entry_acc, "logo",
                 json.dumps(hmm.logo("info_content_all",
                                     "hmm")), "application/json", None))

        cnt += 2
        if cnt >= buffer_size:
            df.close()
            yield df.path
            df = DumpFile(dt.mktemp(), compress=True)
            cnt = 0

    df.close()
    yield df.path

    logger.info(f"  {ignored} models ignored")
Exemple #22
0
def export(p_entries: str, p_uniprot2matches: str, outdir: str):
    logger.info("loading entries")
    entries = []
    integrated = {}
    for e in loadobj(p_entries).values():
        if e.database == "interpro" and not e.is_deleted:
            entries.append(e)

            for signatures in e.integrates.values():
                for signature_acc in signatures:
                    integrated[signature_acc] = (e.accession, e.name)

    logger.info("writing entry.list")
    with open(os.path.join(outdir, "entry.list"), "wt") as fh:
        fh.write("ENTRY_AC\tENTRY_TYPE\tENTRY_NAME\n")

        for e in sorted(entries, key=lambda e: (e.type, e.accession)):
            fh.write(f"{e.accession}\t{e.type}\t{e.name}\n")

    logger.info("writing names.dat")
    with open(os.path.join(outdir, "names.dat"), "wt") as fh:
        for e in sorted(entries, key=lambda e: e.accession):
            fh.write(f"{e.accession}\t{e.name}\n")

    logger.info("writing short_names.dat")
    with open(os.path.join(outdir, "short_names.dat"), "wt") as fh:
        for e in sorted(entries, key=lambda e: e.accession):
            fh.write(f"{e.accession}\t{e.short_name}\n")

    logger.info("writing interpro2go")
    with open(os.path.join(outdir, "interpro2go"), "wt") as fh:
        fh.write(f"!date: {datetime.now():%Y/%m/%d %H:%M:%S}\n")
        fh.write("!Mapping of InterPro entries to GO\n")
        fh.write("!\n")

        for e in sorted(entries, key=lambda e: e.accession):
            for term in e.go_terms:
                fh.write(f"InterPro:{e.accession} {e.name} > "
                         f"GO:{term['name']} ; {term['identifier']}\n")

    logger.info("writing ParentChildTreeFile.txt")
    with open(os.path.join(outdir, "ParentChildTreeFile.txt"), "wt") as fh:
        for e in sorted(entries, key=lambda e: e.accession):
            root = e.hierarchy["accession"]
            if root == e.accession and e.hierarchy["children"]:
                _write_node(e.hierarchy, fh, level=0)

    logger.info("writing protein2ipr.dat.gz")
    filepath = os.path.join(outdir, "protein2ipr.dat.gz")
    with gzip.open(filepath, "wt") as fh, Store(p_uniprot2matches) as sh:
        i = 0
        for uniprot_acc, protein_entries in sh.items():
            matches = []
            for signature_acc in sorted(protein_entries):
                try:
                    interpro_acc, name = integrated[signature_acc]
                except KeyError:
                    # Not integrated signature or InterPro entry
                    continue

                locations = protein_entries[signature_acc]

                for loc in locations:
                    matches.append((
                        uniprot_acc,
                        interpro_acc,
                        name,
                        signature_acc,
                        # We do not consider fragmented locations
                        loc["fragments"][0]["start"],
                        max(f["end"] for f in loc["fragments"])
                    ))

            for m in sorted(matches):
                fh.write('\t'.join(map(str, m)) + '\n')

            i += 1
            if not i % 10000000:
                logger.debug(f"{i:>12,}")

        logger.info(f"{i:>12,}")

    logger.info("complete")
Exemple #23
0
def export_structure_matches(url: str, p_proteins: str, p_structures: str,
                             outdir: str):
    shutil.copy(os.path.join(os.path.dirname(__file__), "feature.dtd"), outdir)

    logger.info("loading structures")
    uniprot2pdbe = {}
    for pdb_id, entry in loadobj(p_structures).items():
        for uniprot_acc, chains in entry["proteins"].items():
            try:
                uniprot2pdbe[uniprot_acc][pdb_id] = chains
            except KeyError:
                uniprot2pdbe[uniprot_acc] = {pdb_id: chains}

    logger.info("loading CATH/SCOP domains")
    uni2prot2cath = pdbe.get_cath_domains(url)
    uni2prot2scop = pdbe.get_scop_domains(url)

    logger.info("writing file")
    output = os.path.join(outdir, "feature.xml.gz")
    with gzip.open(output, "wt", encoding="utf-8") as fh:
        fh.write('<?xml version="1.0" encoding="UTF-8"?>\n')
        fh.write('<!DOCTYPE interprofeature SYSTEM "feature.dtd">\n')
        fh.write('<interprofeature>\n')

        with Store(p_proteins) as proteins:
            doc = getDOMImplementation().createDocument(None, None, None)

            for uniprot_acc, protein in proteins.items():
                pdb_entries = uniprot2pdbe.get(uniprot_acc, {})
                cath_entries = uni2prot2cath.get(uniprot_acc, {})
                scop_entries = uni2prot2scop.get(uniprot_acc, {})

                if pdb_entries or cath_entries or scop_entries:
                    elem = doc.createElement("protein")
                    elem.setAttribute("id", uniprot_acc)
                    elem.setAttribute("name", protein["identifier"])
                    elem.setAttribute("length", str(protein["length"]))
                    elem.setAttribute("crc64", protein["crc64"])

                    for pdb_id in sorted(pdb_entries):
                        chains = pdb_entries[pdb_id]
                        for chain_id in sorted(chains):
                            domain = doc.createElement("domain")
                            domain.setAttribute("id", f"{pdb_id}{chain_id}")
                            domain.setAttribute("dbname", "PDB")

                            for loc in chains[chain_id]:
                                start = loc["protein_start"]
                                end = loc["protein_end"]

                                coord = doc.createElement("coord")
                                coord.setAttribute("pdb", pdb_id)
                                coord.setAttribute("chain", chain_id)
                                coord.setAttribute("start", str(start))
                                coord.setAttribute("end", str(end))
                                domain.appendChild(coord)

                            elem.appendChild(domain)

                    for domain_id in sorted(cath_entries):
                        entry = cath_entries[domain_id]

                        domain = doc.createElement("domain")
                        domain.setAttribute("id", domain_id)
                        domain.setAttribute("cfn", entry["superfamily"]["id"])
                        domain.setAttribute("dbname", "CATH")

                        for loc in entry["locations"]:
                            coord = doc.createElement("coord")
                            coord.setAttribute("pdb", entry["pdb_id"])
                            coord.setAttribute("chain", entry["chain"])
                            coord.setAttribute("start", str(loc["start"]))
                            coord.setAttribute("end", str(loc["end"]))
                            domain.appendChild(coord)

                        elem.appendChild(domain)

                    for domain_id in sorted(scop_entries):
                        entry = scop_entries[domain_id]

                        domain = doc.createElement("domain")
                        domain.setAttribute("id", domain_id)
                        domain.setAttribute("cfn", entry["superfamily"]["id"])
                        domain.setAttribute("dbname", "SCOP")

                        for loc in entry["locations"]:
                            coord = doc.createElement("coord")
                            coord.setAttribute("pdb", entry["pdb_id"])
                            coord.setAttribute("chain", entry["chain"])
                            coord.setAttribute("start", str(loc["start"]))
                            coord.setAttribute("end", str(loc["end"]))
                            domain.appendChild(coord)

                        elem.appendChild(domain)

                    elem.writexml(fh, addindent="  ", newl="\n")

        fh.write('</interprofeature>\n')

    logger.info("complete")
Exemple #24
0
def export_features_matches(url: str,
                            p_proteins: str,
                            p_uniprot2features: str,
                            outdir: str,
                            processes: int = 8):
    shutil.copy(os.path.join(os.path.dirname(__file__), "extra.dtd"), outdir)

    logger.info("loading features")
    con = cx_Oracle.connect(url)
    cur = con.cursor()
    features = ippro.get_features(cur)
    cur.close()
    con.close()

    logger.info("spawning processes")
    processes = max(1, processes - 1)
    ctx = mp.get_context(method="spawn")
    workers = []
    with Store(p_uniprot2features) as proteins:
        proteins_per_file = math.ceil(len(proteins) / processes)
        start_acc = None
        for i, uniprot_acc in enumerate(proteins):
            if not i % proteins_per_file:
                if start_acc:
                    filename = f"extra_{len(workers) + 1}.xml"
                    filepath = os.path.join(outdir, filename)
                    p = ctx.Process(target=_write_feature_tmp,
                                    args=(features, p_proteins,
                                          p_uniprot2features, start_acc,
                                          uniprot_acc, filepath))
                    p.start()
                    workers.append((p, filepath))

                start_acc = uniprot_acc

        filename = f"extra_{len(workers) + 1}.xml"
        filepath = os.path.join(outdir, filename)
        p = ctx.Process(target=_write_feature_tmp,
                        args=(features, p_proteins, p_uniprot2features,
                              start_acc, None, filepath))
        p.start()
        workers.append((p, filepath))

    logger.info("concatenating XML files")
    output = os.path.join(outdir, "extra.xml.gz")
    with gzip.open(output, "wt", encoding="utf-8") as fh:
        fh.write('<?xml version="1.0" encoding="UTF-8"?>\n')
        fh.write('<!DOCTYPE interproextra SYSTEM "extra.dtd">\n')
        fh.write('<interproextra>\n')

        doc = getDOMImplementation().createDocument(None, None, None)
        elem = doc.createElement("release")
        databases = {(f["database"], f["version"]) for f in features.values()}
        for name, version in sorted(databases):
            dbinfo = doc.createElement("dbinfo")
            dbinfo.setAttribute("dbname", name)

            if version:
                dbinfo.setAttribute("version", version)

            elem.appendChild(dbinfo)

        elem.writexml(fh, addindent="  ", newl="\n")

        for i, (p, filepath) in enumerate(workers):
            p.join()
            with open(filepath, "rt", encoding="utf-8") as tfh:
                for line in tfh:
                    fh.write(line)

            os.remove(filepath)
            logger.info(f"\t{i+1} / {len(workers)}")

        fh.write('</interproextra>\n')

    logger.info("complete")
def insert_proteins(p_entries: str, p_proteins: str, p_structures: str,
                    p_taxonomy: str, p_uniprot2comments: str,
                    p_uniprot2name: str, p_uniprot2evidences: str,
                    p_uniprot2ida: str, p_uniprot2matches: str,
                    p_uniprot2proteome: str, p_uniprot2sequence: str,
                    pro_url: str, stg_url: str):
    logger.info("loading CATH/SCOP domains")
    uniprot2cath = pdbe.get_cath_domains(pro_url)
    uniprot2scop = pdbe.get_scop_domains(pro_url)

    logger.info("preparing data")
    proteins = Store(p_proteins)
    u2comments = Store(p_uniprot2comments)
    u2descriptions = Store(p_uniprot2name)
    u2evidences = Store(p_uniprot2evidences)
    u2ida = Store(p_uniprot2ida)
    u2matches = Store(p_uniprot2matches)
    u2proteome = Store(p_uniprot2proteome)
    u2sequence = Store(p_uniprot2sequence)

    taxonomy = {}
    for taxid, info in loadobj(p_taxonomy).items():
        taxonomy[taxid] = jsonify({
            "taxId": taxid,
            "scientificName": info["sci_name"],
            "fullName": info["full_name"]
        })

    uniprot2pdbe = {}
    for pdb_id, entry in loadobj(p_structures).items():
        for uniprot_acc in entry["proteins"]:
            try:
                uniprot2pdbe[uniprot_acc].append(pdb_id)
            except KeyError:
                uniprot2pdbe[uniprot_acc] = [pdb_id]

    logger.info("counting proteins/IDA")
    ida_count = {}
    for dom_members, dom_arch, dom_arch_id in u2ida.values():
        try:
            ida_count[dom_arch_id] += 1
        except KeyError:
            ida_count[dom_arch_id] = 1

    logger.info("inserting proteins")
    entries = loadobj(p_entries)
    con = MySQLdb.connect(**url2dict(stg_url), charset="utf8mb4")
    cur = con.cursor()
    cur.execute("""
        SELECT protein_acc, COUNT(*)
        FROM webfront_varsplic
        GROUP BY protein_acc
        """)
    isoforms = dict(cur.fetchall())

    cur.execute("DROP TABLE IF EXISTS webfront_protein")
    cur.execute("""
        CREATE TABLE webfront_protein
        (
            accession VARCHAR(15) PRIMARY KEY NOT NULL,
            identifier VARCHAR(16) NOT NULL,
            organism LONGTEXT NOT NULL,
            name VARCHAR(255) NOT NULL,
            description LONGTEXT,
            sequence LONGBLOB NOT NULL,
            length INT(11) NOT NULL,
            proteome VARCHAR(20),
            gene VARCHAR(70),
            go_terms LONGTEXT,
            evidence_code INT(11) NOT NULL,
            source_database VARCHAR(10) NOT NULL,
            is_fragment TINYINT NOT NULL,
            structure LONGTEXT,
            tax_id VARCHAR(20) NOT NULL,
            ida_id VARCHAR(40),
            ida TEXT,
            counts LONGTEXT NOT NULL
        ) CHARSET=utf8mb4 DEFAULT COLLATE=utf8mb4_unicode_ci
        """)
    cur.close()

    i = 0
    sql = """
        INSERT into webfront_protein
        VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)
    """
    with Table(con, sql) as table:
        for uniprot_acc, protein_info in proteins.items():
            taxid = protein_info["taxid"]

            try:
                taxon = taxonomy[taxid]
            except KeyError:
                table.close()
                con.close()
                raise RuntimeError(f"{uniprot_acc}: invalid taxon {taxid}")

            try:
                name = u2descriptions[uniprot_acc]
            except KeyError:
                table.close()
                con.close()
                raise RuntimeError(f"{uniprot_acc}: missing name")

            try:
                evidence, gene = u2evidences[uniprot_acc]
            except KeyError:
                table.close()
                con.close()
                raise RuntimeError(f"{uniprot_acc}: missing evidence")

            try:
                sequence = u2sequence[uniprot_acc]
            except KeyError:
                table.close()
                con.close()
                raise RuntimeError(f"{uniprot_acc}: missing sequence")

            proteome_id = u2proteome.get(uniprot_acc)

            clans = []
            databases = {}
            go_terms = {}
            for entry_acc in u2matches.get(uniprot_acc, []):
                entry = entries[entry_acc]

                try:
                    databases[entry.database] += 1
                except KeyError:
                    databases[entry.database] = 1

                if entry.clan:
                    clans.append(entry.clan["accession"])

                for term in entry.go_terms:
                    go_terms[term["identifier"]] = term

            protein_structures = {}
            domains = uniprot2cath.get(uniprot_acc)
            if domains:
                protein_structures["cath"] = {}

                for dom in domains.values():
                    dom_id = dom["id"]

                    protein_structures["cath"][dom_id] = {
                        "domain_id": dom["superfamily"]["id"],
                        "coordinates": dom["locations"]
                    }

            domains = uniprot2scop.get(uniprot_acc)
            if domains:
                protein_structures["scop"] = {}

                for dom in domains.values():
                    dom_id = dom["id"]

                    protein_structures["scop"][dom_id] = {
                        "domain_id": dom["superfamily"]["id"],
                        "coordinates": dom["locations"]
                    }

            try:
                dom_members, dom_arch, dom_arch_id = u2ida[uniprot_acc]
            except KeyError:
                dom_arch = dom_arch_id = None
                dom_count = 0
            else:
                dom_count = ida_count[dom_arch_id]

            table.insert(
                (uniprot_acc, protein_info["identifier"], taxon, name,
                 jsonify(u2comments.get(uniprot_acc)),
                 gzip.compress(sequence.encode("utf-8")),
                 protein_info["length"], proteome_id, gene,
                 jsonify(list(go_terms.values())), evidence,
                 "reviewed" if protein_info["reviewed"] else "unreviewed",
                 1 if protein_info["fragment"] else 0,
                 jsonify(protein_structures), protein_info["taxid"],
                 dom_arch_id, dom_arch,
                 jsonify({
                     "domain_architectures": dom_count,
                     "entries": databases,
                     "isoforms": isoforms.get(uniprot_acc, 0),
                     "proteomes": 1 if proteome_id else 0,
                     "sets": len(set(clans)),
                     "structures": len(uniprot2pdbe.get(uniprot_acc, [])),
                     "taxa": 1
                 })))

            i += 1
            if not i % 10000000:
                logger.info(f"{i:>12,}")

        logger.info(f"{i:>12,}")

    con.commit()

    proteins.close()
    u2comments.close()
    u2descriptions.close()
    u2evidences.close()
    u2ida.close()
    u2matches.close()
    u2proteome.close()
    u2sequence.close()

    logger.info("indexing")
    cur = con.cursor()
    cur.execute("""
        CREATE UNIQUE INDEX ui_protein_identifier
        ON webfront_protein (identifier)
        """)
    cur.execute("""
        CREATE INDEX i_protein_proteome
        ON webfront_protein (proteome)
        """)
    cur.execute("""
        CREATE INDEX i_protein_database
        ON webfront_protein (source_database)
        """)
    cur.execute("""
        CREATE INDEX i_protein_taxon
        ON webfront_protein (tax_id)
        """)
    cur.execute("""
        CREATE INDEX i_protein_ida
        ON webfront_protein (ida_id)
        """)
    cur.execute("""
        CREATE INDEX i_protein_fragment
        ON webfront_protein (is_fragment)
        """)
    cur.close()
    con.close()

    logger.info("complete")
def insert_release_notes(p_entries: str, p_proteins: str, p_proteomes: str,
                         p_structures: str, p_taxonomy: str,
                         p_uniprot2matches: str, p_uniprot2proteome: str,
                         rel_url: str, stg_url: str, relfile: str):
    logger.info("preparing data")
    uniprot2pdbe = {}
    for pdb_id, entry in loadobj(p_structures).items():
        for uniprot_acc in entry["proteins"]:
            try:
                uniprot2pdbe[uniprot_acc].add(pdb_id)
            except KeyError:
                uniprot2pdbe[uniprot_acc] = {pdb_id}

    con = MySQLdb.connect(**url2dict(stg_url), charset="utf8mb4")
    cur = con.cursor()
    cur.execute("""
        SELECT name_long, version
        FROM webfront_database
        WHERE name_long IN ('UniProtKB', 'UniProtKB/Swiss-Prot', 'UniProtKB/TrEMBL')
        """)
    uniprot = {}
    for name, version in cur:
        uniprot[name] = {
            "version": version,
            "count": 0,
            "signatures": 0,
            "integrated_signatures": 0
        }
    cur.close()
    con.close()

    entries = loadobj(p_entries)
    proteins = Store(p_proteins)
    u2matches = Store(p_uniprot2matches)
    u2proteome = Store(p_uniprot2proteome)

    # Entities found in InterPro
    integrated_proteomes = set()
    integrated_structures = set()
    integrated_taxonomy = set()

    # Number of proteins with GO terms from InterPro
    uniprot2go = 0

    logger.info("starting")
    i = 0
    for uniprot_acc, info in proteins.items():
        i += 1
        if not i % 10000000:
            logger.info(f"{i:>12,}")

        if info["reviewed"]:
            database = uniprot["UniProtKB/Swiss-Prot"]
        else:
            database = uniprot["UniProtKB/TrEMBL"]

        database["count"] += 1

        try:
            matches = u2matches[uniprot_acc]
        except KeyError:
            # No matches
            continue

        # Protein matched by at least one signature
        database["signatures"] += 1

        is_integrated = False
        for entry_acc in matches:
            entry = entries[entry_acc]
            if entry.database == "interpro":
                """
                Protein matched by at least one InterPro entry,
                i.e. at least one integrated signature
                """
                is_integrated = True

                if entry.go_terms:
                    uniprot2go += 1
                    break

        if is_integrated:
            database["integrated_signatures"] += 1

            try:
                proteome_id = u2proteome[uniprot_acc]
            except KeyError:
                pass
            else:
                integrated_proteomes.add(proteome_id)

            try:
                pdb_ids = uniprot2pdbe[uniprot_acc]
            except KeyError:
                pass
            else:
                integrated_structures |= pdb_ids

            integrated_taxonomy.add(info["taxid"])

    proteins.close()
    u2matches.close()
    u2proteome.close()

    logger.info(f"{i:>12,}")

    # Sum Swiss-Prot and TrEMBL counts
    for key in ["count", "signatures", "integrated_signatures"]:
        value_sp = uniprot["UniProtKB/Swiss-Prot"][key]
        value_tr = uniprot["UniProtKB/TrEMBL"][key]
        uniprot["UniProtKB"][key] = value_sp + value_tr

    logger.info("tracking changes since last releases")
    con = MySQLdb.connect(**url2dict(rel_url), charset="utf8mb4")
    cur = con.cursor()
    cur.execute("""
        SELECT accession, source_database, integrated_id
        FROM webfront_entry 
        WHERE is_alive = 1
        """)
    public_entries = set()
    public_integrated = set()
    for entry_acc, database, integrated_in in cur:
        if database == "interpro":
            public_entries.add(entry_acc)
        elif integrated_in:
            # Signature already integrated in the previous release
            public_integrated.add(entry_acc)

    cur.execute("""
        SELECT name, version 
        FROM webfront_database 
        WHERE type = 'entry'
        """)
    public_databases = dict(cur.fetchall())
    cur.execute("SELECT * FROM webfront_release_note")
    prev_releases = cur.fetchall()
    cur.close()
    con.close()

    con = MySQLdb.connect(**url2dict(stg_url), charset="utf8mb4")
    cur = con.cursor()
    cur.execute("DROP TABLE IF EXISTS webfront_release_note")
    cur.execute("""
        CREATE TABLE webfront_release_note
        (
            version VARCHAR(20) PRIMARY KEY NOT NULL,
            release_date DATETIME NOT NULL,
            content LONGTEXT NOT NULL
        ) CHARSET=utf8mb4 DEFAULT COLLATE=utf8mb4_unicode_ci
        """)
    cur.executemany(
        """
        INSERT INTO webfront_release_note
        VALUES (%s, %s, %s)
        """, prev_releases)
    con.commit()
    prev_releases = None

    cur.execute("""
        SELECT name, name_long, version, release_date
        FROM webfront_database 
        WHERE type = 'entry'
        """)
    staging_databases = {row[0]: (row[1], row[2], row[3]) for row in cur}

    interpro_new = []
    interpro_types = {}
    member_databases = {}
    pubmed_citations = set()
    interpro2go = 0
    latest_entry = None

    for entry in sorted(loadobj(p_entries).values(),
                        key=lambda e: e.creation_date):
        if entry.is_deleted:
            continue

        if entry.database == "interpro":
            for pub in entry.literature.values():
                if pub["PMID"] is not None:
                    pubmed_citations.add(pub["PMID"])

            try:
                interpro_types[entry.type.lower()] += 1
            except KeyError:
                interpro_types[entry.type.lower()] = 1

            if entry.accession not in public_entries:
                interpro_new.append(entry.accession)

            interpro2go += len(entry.go_terms)
            latest_entry = entry.accession
        else:
            try:
                obj = member_databases[entry.database]
            except KeyError:
                database, version, _ = staging_databases[entry.database]

                is_new = is_updated = False
                if entry.database not in public_databases:
                    is_new = True
                elif version != public_databases[entry.database]:
                    is_updated = True

                obj = member_databases[entry.database] = {
                    "name": database,
                    "version": version,
                    "signatures": 0,
                    "integrated_signatures": 0,
                    "recently_integrated": [],
                    "is_new": is_new,
                    "is_updated": is_updated,
                    "sets": set()
                }

            obj["signatures"] += 1
            if entry.integrated_in:
                obj["integrated_signatures"] += 1

                if entry.accession not in public_integrated:
                    # Recent integration
                    obj["recently_integrated"].append(entry.accession)

            if entry.clan:
                obj["sets"].add(entry.clan["accession"])

    # Transform sets of clans to counts:
    for obj in member_databases.values():
        obj["sets"] = len(obj["sets"])

    structures = list(loadobj(p_structures).values())

    proteomes = set(loadobj(p_proteomes).keys())
    errors = integrated_proteomes - proteomes
    if errors:
        raise RuntimeError(f"{len(errors)} invalid proteomes")

    taxa = set(loadobj(p_taxonomy).keys())
    errors = integrated_taxonomy - taxa
    if errors:
        raise RuntimeError(f"{len(errors)} invalid taxa")

    content = {
        "notes": [],  # TODO implement way to pass custom notes
        "interpro": {
            "entries": sum(interpro_types.values()),
            "new_entries": interpro_new,
            "latest_entry": latest_entry,
            "types": interpro_types,
            "go_terms": interpro2go
        },
        "member_databases": member_databases,
        "proteins": uniprot,
        "structures": {
            "total":
            len(structures),
            "integrated":
            len(integrated_structures),
            "version":
            max(entry["date"] for entry in structures).strftime("%Y-%m-%d")
        },
        "proteomes": {
            "total": len(proteomes),
            "integrated": len(integrated_proteomes),
            "version": uniprot["UniProtKB"]["version"]
        },
        "taxonomy": {
            "total": len(taxa),
            "integrated": len(integrated_taxonomy),
            "version": uniprot["UniProtKB"]["version"]
        },
        "citations": len(pubmed_citations)
    }

    _, version, date = staging_databases["interpro"]
    cur.execute(
        """
        SELECT COUNT(*)
        FROM webfront_release_note
        WHERE version = %s
        """, (version, ))
    n_rows, = cur.fetchone()

    if n_rows:
        cur.execute(
            """
            UPDATE webfront_release_note
            SET content = %s
            WHERE version = %s
            """, (json.dumps(content), version))
    else:
        cur.execute(
            """
            INSERT INTO webfront_release_note
            VALUES (%s, %s, %s)
            """, (version, date, json.dumps(content)))

    con.commit()
    cur.close()
    con.close()

    with open(relfile, "wt") as fh:
        new_integrated = 0
        dbs_integrated = []
        for db in sorted(member_databases.values(), key=lambda x: x["name"]):
            cnt = len(db["recently_integrated"])

            if cnt:
                new_integrated += cnt
                dbs_integrated.append(f"{db['name']} ({cnt})")

        if new_integrated:
            integr_str = (f" integrates {new_integrated} new methods from "
                          f"the {', '.join(dbs_integrated)} databases, and")
        else:
            integr_str = ""

        u_ver = uniprot["UniProtKB"]["version"]
        u_integ = uniprot["UniProtKB"]["integrated_signatures"]
        u_total = uniprot["UniProtKB"]["count"]
        u_cov = round(u_integ / u_total * 100, 1)

        fh.write(f"""\
Title
-----
New releases: InterPro {version} and InterProScan 5.??-{version}

Image: alternate text
---------------------
InterPro: protein sequence analysis & classification

Image: title
------------
InterPro: protein sequence analysis & classification

Summary
-------
InterPro version {version} and InterProScan 5.??-{version} are now available! \
InterPro now features hundreds of new methods integrated \
from partner databases, and InterProScan draws on over \
{sum(interpro_types.values())//1000*1000} entries.

Body
----
<h3>
    <a href="http://www.ebi.ac.uk/interpro/">InterPro version {version}</a>
</h3>

<p>
    <a href="http://www.ebi.ac.uk/interpro/">InterPro {version}</a>\
{integr_str} covers {u_cov}% of UniProt Knowledgebase release {u_ver}. \
It predicts <a href="http://www.geneontology.org/">Gene Ontology</a> \
(GO) terms for over {uniprot2go/1e6:.0f} million UniProt proteins \
via the InterPro2GO pipeline.
</p>

<p>
    The new release includes an update to UniParc (uniparc_match.tar.gz) \
matches to InterPro methods. You can find this on our ftp site: \
<a href="ftp://ftp.ebi.ac.uk/pub/databases/interpro">ftp://ftp.ebi.ac.uk/pub/databases/interpro</a>.
</p>

<p>
    For full details, see <a href="//www.ebi.ac.uk/interpro/release_notes/">the latest InterPro Release Notes</a>.
</p>

<h3>
    <a href="https://github.com/ebi-pf-team/interproscan">InterProScan 5.??-{version}</a>
</h3>

<p>
    InterProScan 5.??-{version} uses data from the newly released InterPro {version}, \
which contains {sum(interpro_types.values()):,} entries. \
You can find the <a href="https://interproscan-docs.readthedocs.io/en/latest/ReleaseNotes.html">full release notes here</a>.
</p>

<p>
    If you need help with InterPro or InterProScan, please contact us using \
<a href="http://www.ebi.ac.uk/support/interpro">our support form</a> - \
your message will reach everyone on the team.
</p>

Meta fields: description
------------------------
We are pleased to announce the release of InterPro {version} \
and InterProScan 5.??-{version}!

Meta fields: tags
-----------------
Protein families, InterProScan, InterPro, Protein, \
protein family, protein motif

URL alias
---------
about/news/service-news/InterPro-{version}
""")

    logger.info("complete")
def insert_structures(p_entries: str, p_proteins: str, p_structures: str,
                      p_uniprot2ida: str, p_uniprot2matches: str,
                      p_uniprot2proteome: str, stg_url: str):
    logger.info("preparing data")
    entries = {}
    for entry in loadobj(p_entries).values():
        entries[entry.accession] = (entry.database, entry.clan)

    uniprot2pdbe = {}
    xrefs = {}
    for pdb_id, entry in loadobj(p_structures).items():
        for uniprot_acc, chains in entry["proteins"].items():
            try:
                uniprot2pdbe[uniprot_acc][pdb_id] = chains
            except KeyError:
                uniprot2pdbe[uniprot_acc] = {pdb_id: chains}

        xrefs[pdb_id] = {
            "domain_architectures": set(),
            "entries": {},
            "proteomes": set(),
            "proteins": 0,
            "sets": set(),
            "taxa": set()
        }

    proteins = Store(p_proteins)
    u2ida = Store(p_uniprot2ida)
    u2matches = Store(p_uniprot2matches)
    u2proteome = Store(p_uniprot2proteome)

    logger.info("starting")
    i = 0
    for uniprot_acc in sorted(uniprot2pdbe):
        info = proteins[uniprot_acc]

        try:
            dom_members, dom_arch, dom_arch_id = u2ida[uniprot_acc]
        except KeyError:
            dom_arch_id = None

        proteome_id = u2proteome.get(uniprot_acc)
        matches = u2matches.get(uniprot_acc, {})

        for pdb_id, chains in uniprot2pdbe[uniprot_acc].items():
            _xrefs = xrefs[pdb_id]

            if dom_arch_id:
                _xrefs["domain_architectures"].add(dom_arch_id)

            if proteome_id:
                _xrefs["proteomes"].add(proteome_id)

            _xrefs["proteins"] += 1
            _xrefs["taxa"].add(info["taxid"])

            for entry_acc, locations in matches.items():
                database, clan = entries[entry_acc]

                for chain_id, segments in chains.items():
                    if overlaps_pdb_chain(locations, segments):
                        try:
                            _xrefs["entries"][database].add(entry_acc)
                        except KeyError:
                            _xrefs["entries"][database] = {entry_acc}

                        if clan:
                            _xrefs["sets"].add(clan["accession"])

                        break  # Skip other chains

        i += 1
        if not i % 10000:
            logger.info(f"{i:>12,}")

    logger.info(f"{i:>12,}")

    proteins.close()
    u2ida.close()
    u2matches.close()
    u2proteome.close()

    con = MySQLdb.connect(**url2dict(stg_url), charset="utf8mb4")
    cur = con.cursor()
    cur.execute("DROP TABLE IF EXISTS webfront_structure")
    cur.execute("""
        CREATE TABLE webfront_structure
        (
            accession VARCHAR(4) PRIMARY KEY NOT NULL,
            name VARCHAR(512) NOT NULL,
            source_database VARCHAR(10) NOT NULL,
            experiment_type VARCHAR(16) NOT NULL,
            release_date DATETIME NOT NULL,
            resolution FLOAT,
            literature LONGTEXT,
            chains LONGTEXT NOT NULL,
            proteins LONGTEXT NOT NULL,
            secondary_structures LONGTEXT,
            counts LONGTEXT NOT NULL
        ) CHARSET=utf8mb4 DEFAULT COLLATE=utf8mb4_unicode_ci
        """)
    cur.close()

    sql = """
        INSERT INTO webfront_structure 
        VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s) 
    """
    with Table(con, sql) as table:
        for pdb_id, info in loadobj(p_structures).items():
            counts = reduce(xrefs[pdb_id])
            counts["entries"]["total"] = sum(counts["entries"].values())
            table.insert((
                pdb_id,
                info["name"],
                "pdb",
                info["evidence"],
                info["date"],
                info["resolution"],
                jsonify(info["citations"]),
                # Sorted list of unique chain (e.g. 'A', 'B', ...)
                jsonify(sorted({
                    chain_id
                    for chains in info["proteins"].values()
                    for chain_id in chains
                }),
                        nullable=False),
                jsonify(info["proteins"], nullable=False),
                jsonify(info["secondary_structures"]),
                jsonify(counts)))

    con.commit()
    con.close()

    logger.info("complete")