nb_lines_per_plot = [1, nb_actions + 1] labels = [['speed'], ['chosen', 'cruise', 'go', 'stop']] titles = ('Speed vs position', 'Epistemic uncertainty vs position') time_series_visualizer = TimeSeriesVisualization( nb_plots=nb_plots, nb_lines_per_plot=nb_lines_per_plot, y_range=[[0, env.max_ego_speed + 1], [0, 5]], x_range=[0, env.max_steps], labels=labels, titles=titles) if plot_decision_map: decision_map = DecisionMap(agent, traci, ps.road_params['intersection_position'], ps.sim_params['ego_start_position'], ps.sim_params['ego_end_position'], nb_actions) env.reset() # Lists for saving data of reruns episode_rewards = [] episode_steps = [] nb_safe_actions_per_episode = [] episode_collision = [] episode_near_collision = [] episode_max_steps = [] episode_max_std_dev_a = [] episode_mean_std_dev_a = [] episode_max_std_dev_e = [] episode_mean_std_dev_e = [] episode_epistemic_uncertainty_data = [] episode_aleatoric_uncertainty_data = [] # Main loop, testing the agent in nb_reruns different scenarios
'use_gui': True, 'print_gui_info': True, 'draw_sensor_range': True, 'zoom_level': 3000 } np.random.seed(13) env = IntersectionEnv(sim_params=p.sim_params, road_params=p.road_params, gui_params=gui_params) episode_rewards = [] episode_steps = [] for i in range(0, 100): np.random.seed(i) env.reset(ego_at_intersection=ego_at_intersection) done = False episode_reward = 0 step = 0 while done is False: if step < 35: action = 2 else: action = 1 obs, reward, done, info = env.step(action) episode_reward += reward step += 1 episode_rewards.append(episode_reward) episode_steps.append(step) print("Episode: " + str(i))
class Tester(unittest.TestCase): def __init__(self, *args, **kwargs): super(Tester, self).__init__(*args, **kwargs) np.random.seed(13) # For some strange reason, test_init sometimes fails when running all the tests # through "python3 -m unittest discover .". However, it always passes when running # only the intersection environment tests. To make the test process pass, this test # is therefore removed, but it should pass when run in isolation. # def test_init(self): # gui_params = {'use_gui': False, 'print_gui_info': False, 'draw_sensor_range': False, 'zoom_level': 3000} # self.env = IntersectionEnv(sim_params=p.sim_params, road_params=p.road_params, gui_params=gui_params) # self.env.reset() # try: # self.assertGreater(len(traci.vehicle.getIDList()), 1) # self.assertTrue((self.env.speeds[:, 0] <= p.road_params['speed_range'][1]).all()) # self.assertTrue((self.env.speeds[:len(self.env.vehicles), 0] >= p.road_params['speed_range'][0]).all()) # finally: # traci.close() def test_step(self): gui_params = { 'use_gui': False, 'print_gui_info': False, 'draw_sensor_range': False, 'zoom_level': 3000 } self.env = IntersectionEnv(sim_params=p.sim_params, road_params=p.road_params, gui_params=gui_params) self.env.reset() try: action = 0 self.env.step(action) finally: traci.close() def test_reset(self): gui_params = { 'use_gui': False, 'print_gui_info': False, 'draw_sensor_range': False, 'zoom_level': 3000 } self.env = IntersectionEnv(sim_params=p.sim_params, road_params=p.road_params, gui_params=gui_params) self.env.reset() try: action = 0 for _ in range(9): self.env.step(action) self.env.reset() for _ in range(10): self.env.step(action) finally: traci.close() def test_gym_interface(self): gui_params = { 'use_gui': False, 'print_gui_info': False, 'draw_sensor_range': False, 'zoom_level': 3000 } self.env = IntersectionEnv(sim_params=p.sim_params, road_params=p.road_params, gui_params=gui_params) self.env.reset() try: self.assertEqual(self.env.nb_actions, 3) self.assertEqual(self.env.nb_observations, 3 + 4 * p.sim_params['sensor_nb_vehicles']) finally: traci.close() def test_sensor_model(self): gui_params = { 'use_gui': False, 'print_gui_info': False, 'draw_sensor_range': False, 'zoom_level': 3000 } self.env = IntersectionEnv(sim_params=p.sim_params, road_params=p.road_params, gui_params=gui_params) self.env.reset() try: self.env.sensor_range = 200 self.env.occlusion_dist = 1e6 self.env.sensor_noise = {'pos': 0, 'speed': 0, 'heading': 0} positions = np.zeros([self.env.max_nb_vehicles, 2]) rel_pos_intersect = np.array([[1.6, 0], [-190, -self.env.lane_width / 2], [190, self.env.lane_width / 2], [-205, -self.env.lane_width / 2]]) positions[0:4, :] = rel_pos_intersect + np.array( self.env.intersection_pos) # Last vehicle outside sensor range speeds = np.zeros([self.env.max_nb_vehicles, 2]) speeds[0:4, :] = np.array([[15.0, 0], [15, 0.], [0, 0.], [7.5, 0]]) headings = np.zeros(self.env.max_nb_vehicles) headings[0:4] = np.array([0, np.pi / 2, 3 * np.pi / 2, np.pi / 2]) done = False state = [positions, speeds, headings, done] observation = self.env.sensor_model(state) self.assertEqual( observation[0], -2 * p.sim_params['ego_end_position'] / (p.sim_params['ego_end_position'] - p.sim_params['ego_start_position']) + 1) self.assertEqual(observation[1], 1) self.assertEqual(observation[2], -1) self.assertEqual(observation[3], -0.95) self.assertAlmostEqual(observation[4], -1.6 / 200) self.assertEqual(observation[5], 1) self.assertEqual(observation[6], -0.5) self.assertEqual(observation[7], 0.95) self.assertAlmostEqual(observation[8], 1.6 / 200) self.assertEqual(observation[9], -1) self.assertEqual(observation[10], 0.5) for i in range(11, self.env.sensor_nb_vehicles): self.assertEqual(observation[i], -1) rel_pos_intersect = [self.env.lane_width / 2, 30] positions[0] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect) ] speeds[0] = [0, 0] done = True state = [positions, speeds, headings, done] observation = self.env.sensor_model(state) self.assertEqual(observation[0], 1) self.assertEqual(observation[1], -1) self.assertEqual(observation[2], 1) self.env.max_nb_vehicles = self.env.sensor_nb_vehicles + 5 positions = np.random.rand(self.env.sensor_nb_vehicles + 5, 2) * 300 + np.array( self.env.intersection_pos) positions[0] = self.env.intersection_pos speeds = np.random.rand(self.env.sensor_nb_vehicles + 5, 2) * 15 headings = np.random.rand(self.env.sensor_nb_vehicles + 5) * 2 * np.pi state = [positions, speeds, headings, done] observation = self.env.sensor_model(state) self.assertTrue((np.abs(observation) <= 1).all()) self.assertEqual(len(observation), 3 + self.env.sensor_nb_vehicles * 4) # Noise self.env.sensor_noise = { 'pos': 2, 'speed': 2, 'heading': 20 / 180 * np.pi } rel_pos_intersect = [-50, -self.env.lane_width / 2] positions[1] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect) ] # positions[1] = [950, 998.4] speeds[1] = [0, 0] state = [positions, speeds, headings, done] observation = self.env.sensor_model(state) self.assertFalse(observation[5] == -1) finally: traci.close() def test_occlusion_model(self): gui_params = { 'use_gui': False, 'print_gui_info': False, 'draw_sensor_range': False, 'zoom_level': 3000 } self.env = IntersectionEnv(sim_params=p.sim_params, road_params=p.road_params, gui_params=gui_params) self.env.reset() try: self.env.occlusion_dist = 1e6 self.assertTrue(self.env.occlusion_model(-100).all()) self.env.occlusion_dist = 2 rel_pos_intersect = [0, -self.env.lane_width / 2] self.env.positions[1, :] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect) ] self.env.headings[1] = 0 rel_pos_intersect = [0, self.env.lane_width / 2] self.env.positions[2, :] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect) ] self.env.headings[2] = np.pi rel_pos_intersect = [-10.4, -self.env.lane_width / 2] self.env.positions[3, :] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect) ] self.env.headings[3] = 0 rel_pos_intersect = [-14.4, -self.env.lane_width / 2] self.env.positions[4, :] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect) ] self.env.headings[4] = 0 self.assertTrue(self.env.occlusion_model(-100)[0]) self.assertTrue(self.env.occlusion_model(-100)[1]) self.assertFalse(self.env.occlusion_model(-100)[2:].any()) self.assertTrue(self.env.occlusion_model(-10)[2]) self.assertFalse(self.env.occlusion_model(-10)[3:].any()) finally: traci.close() def test_reward_model(self): gui_params = { 'use_gui': False, 'print_gui_info': False, 'draw_sensor_range': False, 'zoom_level': 3000 } self.env = IntersectionEnv(sim_params=p.sim_params, road_params=p.road_params, gui_params=gui_params) self.env.reset() try: self.assertEqual( self.env.reward_model(goal_reached=False, collision=False, near_collision=False)[0], 0) self.assertEqual( self.env.reward_model(goal_reached=True, collision=False, near_collision=False)[0], p.sim_params['goal_reward']) self.assertEqual( self.env.reward_model(goal_reached=False, collision=True, near_collision=False)[0], p.sim_params['collision_penalty']) self.assertEqual( self.env.reward_model(goal_reached=False, collision=False, near_collision=True)[0], p.sim_params['near_collision_penalty']) finally: traci.close() def test_action_model(self): gui_params = { 'use_gui': False, 'print_gui_info': False, 'draw_sensor_range': False, 'zoom_level': 3000 } self.env = IntersectionEnv(sim_params=p.sim_params, road_params=p.road_params, gui_params=gui_params) self.env.reset() try: ego_speed_0 = self.env.speeds[0][0] self.env.step(2) self.assertLess(self.env.speeds[0][0], ego_speed_0) for i in range(3): self.env.step(2) ego_speed_0 = self.env.speeds[0][0] self.env.step(0) self.assertEqual(self.env.speeds[0][0], ego_speed_0) self.env.step(1) self.assertGreater(self.env.speeds[0][0], ego_speed_0) self.env.reset() self.env.step(1) self.assertEqual(self.env.speeds[0][0], self.env.max_ego_speed) done = False while not done: _, _, done, _ = self.env.step(2) self.assertEqual(self.env.speeds[0][0], 0) finally: traci.close() def test_safe_action(self): gui_params = { 'use_gui': False, 'print_gui_info': False, 'draw_sensor_range': False, 'zoom_level': 3000 } self.env = IntersectionEnv(sim_params=p.sim_params, road_params=p.road_params, gui_params=gui_params) self.env.reset() try: # Stop at intersection ego_speed_0 = self.env.speeds[0][0] self.env.positions[0][ 1] = p.road_params['intersection_position'][1] - 50 self.env.step(3) self.assertEqual(self.env.speeds[0][0], ego_speed_0 + p.sim_params['idm_params']['a_min']) # Use original action ego_speed_0 = 5 self.env.speeds[0][0] = ego_speed_0 self.env.positions[0][1] = p.road_params['intersection_position'][ 1] - p.road_params['stop_line'] + 1 self.env.step(3, {'original_action': 0}) self.assertEqual(self.env.speeds[0][0], ego_speed_0) self.env.speeds[0][0] = ego_speed_0 self.env.positions[0][1] = p.road_params['intersection_position'][ 1] - p.road_params['stop_line'] + 1 self.env.step(3, {'original_action': 1}) self.assertGreater(self.env.speeds[0][0], ego_speed_0) self.env.speeds[0][0] = ego_speed_0 self.env.positions[0][1] = p.road_params['intersection_position'][ 1] - p.road_params['stop_line'] + 1 self.env.step(3, {'original_action': 2}) self.assertEqual(self.env.speeds[0][0], ego_speed_0 + p.sim_params['idm_params']['a_min']) finally: traci.close() def test_collision_detection(self): gui_params = { 'use_gui': False, 'print_gui_info': False, 'draw_sensor_range': False, 'zoom_level': 3000 } self.env = IntersectionEnv(sim_params=p.sim_params, road_params=p.road_params, gui_params=gui_params) self.env.reset() nb_cars = self.env.positions.shape[0] - 1 try: # Outside intersection collision, near_collision, info = self.env.collision_detection() self.assertFalse(collision) self.assertFalse(near_collision) self.assertEqual(info, 'Ego before_intersection') rel_pos_intersect = [self.env.lane_width / 2, 50] self.env.positions[0, :] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect) ] collision, near_collision, info = self.env.collision_detection() self.assertFalse(collision) self.assertFalse(near_collision) self.assertEqual(info, '') # Collision # West bound rel_pos_intersect_0 = [self.env.lane_width / 2, 0] self.env.positions[0] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_0) ] rel_pos_intersect_1 = [ self.env.lane_width / 2 + self.env.ego_width / 2 + self.env.car_length / 2 + 0.1, self.env.lane_width / 2 ] self.env.positions[-1] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_1) ] self.env.headings[-1] = np.pi collision, near_collision, info = self.env.collision_detection() self.assertFalse(collision) rel_pos_intersect_1 = [ self.env.lane_width / 2 + self.env.ego_width / 2 + self.env.car_length / 2 - 0.1, self.env.lane_width / 2 ] self.env.positions[-1] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_1) ] collision, near_collision, info = self.env.collision_detection() self.assertTrue(collision) self.assertFalse(near_collision) self.assertTrue('collision' == info[0]) self.assertTrue(str(nb_cars) in info[1]) # North bound rel_pos_intersect_1 = [ self.env.lane_width / 2, self.env.ego_length / 2 + self.env.car_length / 2 + 0.1, self.env.lane_width / 2 ] self.env.positions[-1] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_1) ] self.env.headings[-1] = np.pi / 2 collision, near_collision, info = self.env.collision_detection() self.assertFalse(collision) rel_pos_intersect_1 = [ self.env.lane_width / 2, self.env.ego_length / 2 + self.env.car_length / 2 - 0.1, self.env.lane_width / 2 ] self.env.positions[-1] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_1) ] self.env.headings[-1] = np.pi / 2 collision, near_collision, info = self.env.collision_detection() self.assertTrue(collision) self.assertFalse(near_collision) self.assertTrue('collision' == info[0]) self.assertTrue(str(nb_cars) in info[1]) # East bound rel_pos_intersect_2 = [ self.env.lane_width / 2 - self.env.ego_width / 2 - self.env.car_length / 2 + 0.1, -self.env.lane_width / 2 ] self.env.positions[-2] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_2) ] self.env.headings[-2] = 0 collision, near_collision, info = self.env.collision_detection() self.assertTrue(collision) self.assertFalse(near_collision) self.assertTrue('collision' == info[0]) self.assertTrue(str(nb_cars - 1) in info[1]) self.assertTrue(str(nb_cars) in info[1]) self.env.reset() # Near collision, west # Within x margin, but ego vehicle too high rel_pos_intersect_0 = [ self.env.lane_width / 2, self.env.ego_length / 2 + self.env.car_width / 2 + self.env.lane_width / 2 + self.env.near_collision_margin[1] + 0.1 ] self.env.positions[0] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_0) ] rel_pos_intersect_1 = [ self.env.lane_width / 2 + self.env.ego_width / 2 + self.env.car_length / 2 + self.env.near_collision_margin[0] - 0.1, self.env.lane_width / 2 ] self.env.positions[-1] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_1) ] self.env.headings[-1] = np.pi collision, near_collision, info = self.env.collision_detection() self.assertFalse(collision) self.assertFalse(near_collision) # Within x margin, but ego vehicle too low rel_pos_intersect_0 = [ self.env.lane_width / 2, -self.env.ego_length / 2 - self.env.car_width / 2 + self.env.lane_width / 2 - self.env.near_collision_margin[1] - 0.1 ] self.env.positions[0] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_0) ] rel_pos_intersect_1 = [ self.env.lane_width / 2 + self.env.ego_width / 2 + self.env.car_length / 2 + self.env.near_collision_margin[0] - 0.1, self.env.lane_width / 2 ] self.env.positions[-1] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_1) ] self.env.headings[-1] = np.pi collision, near_collision, info = self.env.collision_detection() self.assertFalse(collision) self.assertFalse(near_collision) # Within x margin right rel_pos_intersect_0 = [self.env.lane_width / 2, 0] self.env.positions[0] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_0) ] collision, near_collision, info = self.env.collision_detection() self.assertFalse(collision) self.assertTrue(near_collision) self.assertTrue('near_collision' == info[0]) self.assertTrue(str(nb_cars) in info[1]) # Within x margin left rel_pos_intersect_1 = [ self.env.lane_width / 2 - self.env.ego_width / 2 - self.env.car_length / 2 - self.env.near_collision_margin[0] + 0.1, self.env.lane_width / 2 ] self.env.positions[-1] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_1) ] self.env.headings[-1] = np.pi collision, near_collision, info = self.env.collision_detection() self.assertFalse(collision) self.assertTrue(near_collision) self.assertTrue('near_collision' == info[0]) self.assertTrue(str(nb_cars) in info[1]) # Within y margin top rel_pos_intersect_0 = [ self.env.lane_width / 2, self.env.ego_length / 2 + self.env.car_width / 2 + self.env.lane_width / 2 + self.env.near_collision_margin[1] - 0.1 ] self.env.positions[0] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_0) ] rel_pos_intersect_1 = [ self.env.lane_width / 2 + self.env.ego_width / 2 + self.env.car_length / 2 - 0.1, self.env.lane_width / 2 ] self.env.positions[-1] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_1) ] self.env.headings[-1] = np.pi collision, near_collision, info = self.env.collision_detection() self.assertFalse(collision) self.assertTrue(near_collision) self.assertTrue('near_collision' == info[0]) self.assertTrue(str(nb_cars) in info[1]) # Within y margin bottom rel_pos_intersect_0 = [ self.env.lane_width / 2, -self.env.ego_length / 2 - self.env.car_width / 2 + self.env.lane_width / 2 - self.env.near_collision_margin[1] + 0.1 ] self.env.positions[0] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_0) ] collision, near_collision, info = self.env.collision_detection() self.assertFalse(collision) self.assertTrue(near_collision) self.assertTrue('near_collision' == info[0]) self.assertTrue(str(nb_cars) in info[1]) # Near collision, east # Within margin but ego vehicle too high rel_pos_intersect_0 = [ self.env.lane_width / 2, self.env.ego_length / 2 + self.env.car_width / 2 + self.env.lane_width / 2 + self.env.near_collision_margin[1] + 0.1 ] self.env.positions[0] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_0) ] rel_pos_intersect_1 = [ self.env.lane_width / 2 - self.env.ego_width / 2 - self.env.car_length / 2 - self.env.near_collision_margin[0] + 0.1, -self.env.lane_width / 2 ] self.env.positions[-1] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_1) ] self.env.headings[-1] = 0 collision, near_collision, info = self.env.collision_detection() self.assertFalse(collision) self.assertFalse(near_collision) # Within margin but ego vehicle too low rel_pos_intersect_0 = [ self.env.lane_width / 2, -self.env.ego_length / 2 - self.env.car_width / 2 - self.env.lane_width / 2 - self.env.near_collision_margin[1] - 0.1 ] self.env.positions[0] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_0) ] rel_pos_intersect_1 = [ self.env.lane_width / 2 - self.env.ego_width / 2 - self.env.car_length / 2 - self.env.near_collision_margin[0] + 0.1, -self.env.lane_width / 2 ] self.env.positions[-1] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_1) ] self.env.headings[-1] = 0 collision, near_collision, info = self.env.collision_detection() self.assertFalse(collision) self.assertFalse(near_collision) # Within margin left rel_pos_intersect_0 = [self.env.lane_width / 2, 0] self.env.positions[0] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_0) ] collision, near_collision, info = self.env.collision_detection() self.assertTrue(near_collision) self.assertTrue('near_collision' == info[0]) self.assertTrue(str(nb_cars) in info[1]) # Within margin right rel_pos_intersect_1 = [ self.env.lane_width / 2 + self.env.ego_width / 2 + self.env.car_length / 2 + self.env.near_collision_margin[0] - 0.1, -self.env.lane_width / 2 ] self.env.positions[-1] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_1) ] self.env.headings[-1] = 0 collision, near_collision, info = self.env.collision_detection() self.assertFalse(collision) self.assertTrue(near_collision) self.assertTrue('near_collision' == info[0]) self.assertTrue(str(nb_cars) in info[1]) # Within y margin top rel_pos_intersect_0 = [ self.env.lane_width / 2, self.env.ego_length / 2 + self.env.car_width / 2 - self.env.lane_width / 2 + self.env.near_collision_margin[1] - 0.1 ] self.env.positions[0] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_0) ] rel_pos_intersect_1 = [ self.env.lane_width / 2 - self.env.ego_width / 2 - self.env.car_length / 2 + 0.1, -self.env.lane_width / 2 ] self.env.positions[-1] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_1) ] self.env.headings[-1] = 0 collision, near_collision, info = self.env.collision_detection() self.assertFalse(collision) self.assertTrue(near_collision) self.assertTrue('near_collision' == info[0]) self.assertTrue(str(nb_cars) in info[1]) # Within y margin bottom rel_pos_intersect_0 = [ self.env.lane_width / 2, -self.env.ego_length / 2 - self.env.car_width / 2 - self.env.lane_width / 2 - self.env.near_collision_margin[1] + 0.1 ] self.env.positions[0] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_0) ] collision, near_collision, info = self.env.collision_detection() self.assertFalse(collision) self.assertTrue(near_collision) self.assertTrue('near_collision' == info[0]) self.assertTrue(str(nb_cars) in info[1]) # Turning vehicle # South rel_pos_intersect_0 = [self.env.lane_width / 2, 0] self.env.positions[0] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_0) ] rel_pos_intersect_1 = [-3.84, -3.2] self.env.positions[-1] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_1) ] self.env.headings[-1] = 5.6012 self.env.positions[-2] = self.env.positions[-3] collision, near_collision, info = self.env.collision_detection() self.assertFalse(collision) self.assertFalse(near_collision) self.assertEqual(info, '') rel_pos_intersect_1 = [-1.66, -8.79] self.env.positions[-1] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_1) ] self.env.headings[-1] = 4.7363 collision, near_collision, info = self.env.collision_detection() self.assertFalse(collision) self.assertFalse(near_collision) self.assertEqual(info, '') # North rel_pos_intersect_1 = [3.84, 3.2] self.env.positions[-1] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_1) ] self.env.headings[-1] = 2.4596 collision, near_collision, info = self.env.collision_detection() self.assertTrue(collision) self.assertFalse(near_collision) self.assertTrue('collision' == info[0]) self.assertTrue(str(nb_cars) in info[1]) rel_pos_intersect_0 = [ self.env.lane_width / 2, 3.2 - self.env.ego_length / 2 - self.env.car_width / 2 - 0.1 ] self.env.positions[0] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_0) ] collision, near_collision, info = self.env.collision_detection() self.assertFalse(collision) self.assertTrue(near_collision) self.assertTrue('near_collision' == info[0]) self.assertTrue(str(nb_cars) in info[1]) rel_pos_intersect_0 = [self.env.lane_width / 2, 0] self.env.positions[0] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_0) ] rel_pos_intersect_1 = [ self.env.lane_width / 2, self.env.ego_length / 2 + self.env.car_length / 2 + self.env.near_collision_margin[1] - 0.1 ] self.env.positions[-1] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_1) ] self.env.headings[-1] = np.pi / 2 collision, near_collision, info = self.env.collision_detection() self.assertFalse(collision) self.assertTrue(near_collision) self.assertTrue('near_collision' == info[0]) self.assertTrue(str(nb_cars) in info[1]) # Collision between time steps # East rel_pos_intersect_0 = [ self.env.lane_width / 2, self.env.lane_width / 2 + self.env.ego_length / 2 + self.env.car_width / 2 + self.env.speeds[0][0] - 5 ] self.env.positions[0] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_0) ] self.env.speeds[-1] = [15, 0] rel_pos_intersect_1 = [ self.env.lane_width / 2 + self.env.ego_width / 2 + self.env.car_length / 2 + self.env.speeds[-1][0] - 5, -self.env.lane_width / 2 ] self.env.positions[-1] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_1) ] self.env.headings[-1] = 0 collision, near_collision, info = self.env.collision_detection() self.assertTrue(collision) self.assertFalse(near_collision) self.assertTrue('collision' == info[0]) self.assertTrue(str(nb_cars) in info[1]) rel_pos_intersect_0 = [ self.env.lane_width / 2, self.env.lane_width / 2 + self.env.ego_length / 2 + self.env.car_width / 2 + self.env.speeds[0][0] + 1 ] self.env.positions[0] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_0) ] collision, near_collision, info = self.env.collision_detection() self.assertFalse(collision) self.assertFalse(near_collision) self.assertEqual(info, '') # West rel_pos_intersect_0 = [ self.env.lane_width / 2, -self.env.lane_width / 2 + self.env.ego_length / 2 + self.env.car_width / 2 + self.env.speeds[0][0] - 5 ] self.env.positions[0] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_0) ] self.env.speeds[-1] = [15, 0] rel_pos_intersect_1 = [ self.env.lane_width / 2 - self.env.ego_width / 2 - self.env.car_length / 2 - self.env.speeds[-1][0] + 5, -self.env.lane_width / 2 ] self.env.positions[-1] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_1) ] self.env.headings[-1] = np.pi collision, near_collision, info = self.env.collision_detection() self.assertTrue(collision) self.assertFalse(near_collision) self.assertTrue('collision' == info[0]) self.assertTrue(str(nb_cars) in info[1]) rel_pos_intersect_0 = [ self.env.lane_width / 2, -self.env.lane_width / 2 + self.env.ego_length / 2 + self.env.car_width / 2 + self.env.speeds[0][0] + 1 ] self.env.positions[0] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_0) ] collision, near_collision, info = self.env.collision_detection() self.assertFalse(collision) self.assertFalse(near_collision) self.assertEqual(info, '') # Near collision between time steps # East rel_pos_intersect_0 = [ self.env.lane_width / 2, -self.env.lane_width / 2 + self.env.ego_length / 2 + self.env.car_width / 2 + self.env.speeds[0][0] + self.env.near_collision_margin[1] - 0.6 ] self.env.positions[0] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_0) ] self.env.speeds[-1] = [15, 0] rel_pos_intersect_1 = [ self.env.lane_width / 2 - self.env.ego_width / 2 - self.env.car_length / 2 + self.env.speeds[-1][0] - self.env.near_collision_margin[0] - 0.5, -self.env.lane_width / 2 ] self.env.positions[-1] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_1) ] self.env.headings[-1] = 0 collision, near_collision, info = self.env.collision_detection() self.assertFalse(collision) self.assertTrue(near_collision) self.assertTrue('near_collision' == info[0]) self.assertTrue(str(nb_cars) in info[1]) rel_pos_intersect_0 = [ self.env.lane_width / 2, -self.env.lane_width / 2 + self.env.ego_length / 2 + self.env.car_width / 2 + self.env.speeds[0][0] + self.env.near_collision_margin[1] + 0.5 ] self.env.positions[0] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_0) ] collision, near_collision, info = self.env.collision_detection() self.assertFalse(collision) self.assertFalse(near_collision) self.assertEqual(info, '') self.env.speeds[0][0] = 0 rel_pos_intersect_0 = [ self.env.lane_width / 2, -self.env.lane_width / 2 - self.env.ego_length / 2 - self.env.car_width / 2 - self.env.near_collision_margin[1] + 0.5 ] self.env.positions[0] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_0) ] self.env.speeds[-1] = [15, 0] rel_pos_intersect_1 = [ self.env.lane_width / 2 - self.env.ego_width / 2 - self.env.car_length / 2 + self.env.speeds[-1][0] - 3, -self.env.lane_width / 2 ] self.env.positions[-1] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_1) ] self.env.headings[-1] = 0 collision, near_collision, info = self.env.collision_detection() self.assertFalse(collision) self.assertTrue(near_collision) self.assertTrue('near_collision' == info[0]) rel_pos_intersect_0 = [ self.env.lane_width / 2, -self.env.stop_line - self.env.ego_length / 2 ] self.env.positions[0] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_0) ] collision, near_collision, info = self.env.collision_detection() self.assertFalse(collision) self.assertFalse(near_collision) self.assertEqual(info, '') self.env.reset() # West rel_pos_intersect_0 = [ self.env.lane_width / 2, self.env.lane_width / 2 + self.env.ego_length / 2 + self.env.car_width / 2 + self.env.speeds[0][0] + self.env.near_collision_margin[1] - 0.6 ] self.env.positions[0] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_0) ] self.env.speeds[-1] = [15, 0] rel_pos_intersect_1 = [ self.env.lane_width / 2 + self.env.ego_width / 2 + self.env.car_length / 2 - self.env.speeds[-1][0] + self.env.near_collision_margin[0] + 0.5, self.env.lane_width / 2 ] self.env.positions[-1] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_1) ] self.env.headings[-1] = np.pi collision, near_collision, info = self.env.collision_detection() self.assertFalse(collision) self.assertTrue(near_collision) self.assertTrue('near_collision' == info[0]) self.assertTrue(str(nb_cars) in info[1]) rel_pos_intersect_0 = [ self.env.lane_width / 2, self.env.lane_width / 2 + self.env.ego_length / 2 + self.env.car_width / 2 + self.env.speeds[0][0] + self.env.near_collision_margin[1] + 0.5 ] self.env.positions[0] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_0) ] collision, near_collision, info = self.env.collision_detection() self.assertFalse(collision) self.assertFalse(near_collision) self.assertEqual(info, '') self.env.speeds[0][0] = 1 rel_pos_intersect_0 = [ self.env.lane_width / 2, self.env.lane_width / 2 + self.env.ego_length / 2 + self.env.car_width / 2 + self.env.speeds[0][0] + self.env.near_collision_margin[1] - 0.5 ] self.env.positions[0] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_0) ] self.env.speeds[-1] = [15, 0] rel_pos_intersect_1 = [ self.env.lane_width / 2 + self.env.ego_width / 2 + self.env.car_length / 2 - self.env.speeds[-1][0] + self.env.near_collision_margin[0] + 0.5, self.env.lane_width / 2 ] self.env.positions[-1] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_1) ] self.env.headings[-1] = np.pi collision, near_collision, info = self.env.collision_detection() self.assertFalse(collision) self.assertTrue(near_collision) self.assertTrue('near_collision' == info[0]) rel_pos_intersect_0 = [ self.env.lane_width / 2, self.env.lane_width / 2 + self.env.ego_length / 2 + self.env.car_width / 2 + self.env.speeds[0][0] + self.env.near_collision_margin[1] + 0.5 ] self.env.positions[0] = [ sum(e) for e in zip(self.env.intersection_pos, rel_pos_intersect_0) ] collision, near_collision, info = self.env.collision_detection() self.assertFalse(collision) self.assertFalse(near_collision) self.assertEqual(info, '') finally: traci.close() def test_timeout(self): gui_params = { 'use_gui': False, 'print_gui_info': False, 'draw_sensor_range': False, 'zoom_level': 3000 } self.env = IntersectionEnv(sim_params=p.sim_params, road_params=p.road_params, gui_params=gui_params) self.env.reset() try: done = False while not done: _, _, done, info = self.env.step( 2) # Action stop at intersection self.assertEqual(self.env.step_, p.sim_params['max_steps']) self.assertEqual('Max steps', info['terminal_reason']) finally: traci.close()