Exemple #1
0
def show_yield(ticker, start=None, end=None, weeks=52):
    """
    Calculate annualized return. Simple return is calculated
    input:  ticker  ticker of the stock/ETF
            start   start date, default '2000-01-01'
            end     end date, default current
            weeks   number of weeks for each calculation, default 52
    Return a DataFrame with three rows: Adj Close, Dividend, Close
    """
    from invest.useful import convert_time
    from invest.get_data import read_ETF
    from invest.calculation import add_dividend, get_returns
    from time_series.functions import resample
    start, end = convert_time(start, end)
    data = read_ETF(ticker)[start:end]
    add_dividend(data, price='Close', adj='Adj Close', out='Dividend')
    data['Dividend'] = np.cumsum(data.Dividend)
    weekly = resample(data, style='week', method='close')
    weekly = weekly[(weekly.shape[0] - 1) % weeks::weeks]
    df = get_returns(weekly[['Adj Close', 'Dividend', 'Close']], 'simple')
    df['Dividend'] = (weekly.Dividend.diff() / weekly.Close.shift(1))
    df = df * 100 * 52 / weeks
    from datetime import timedelta
    ds = df.index
    xlim = [
        ds[0] - timedelta(days=3 * weeks), ds[-1] + timedelta(days=3 * weeks)
    ]
    plt.figure(figsize=(14, 3))
    plt.title("Annualized Return")
    plt.hlines(xmin=xlim[0], xmax=xlim[1], y=0)
    plt.hlines(xmin=xlim[0],
               xmax=xlim[1],
               y=df['Adj Close'].mean(),
               linestyle='--',
               color='#1f77b4')
    plt.hlines(xmin=xlim[0],
               xmax=xlim[1],
               y=df.Dividend.mean(),
               linestyle='--',
               color='#ff7f0e')
    plt.bar(ds, df.Close, width=5 * weeks, label='Yield')
    plt.bar(ds,
            df.Dividend,
            bottom=df.Close,
            width=5 * weeks,
            label='Div_Yield')
    plt.plot(ds, df['Adj Close'], 'o-', label='Adj_Yield')
    plt.xlabel("Date to sell")
    plt.xlim(xlim)
    plt.ylim([np.min(df.values) - 0.2, np.max(df.values) + 0.2])
    plt.legend(bbox_to_anchor=(1.01, 0.9), loc='upper left')
    plt.grid()
    df.index = df.index.date

    print(np.round(df, 2))
    plt.show()
    return np.round(df, 2).T
Exemple #2
0
def show_trend(ticker, start=None, end=None):
    """
    Plot price change, return and volatility
    input:  ticker  ticker of the stock/ETF
            start   start date, default '2000-01-01'
            end     end date, default current
    Return correlation between return and volatility
    """
    from invest.useful import convert_time
    from invest.get_data import read_ETF
    from invest.calculation import get_returns
    from time_series.functions import moving_agg, resample
    from basic.mathe import covariance, correlation
    start, end = convert_time(start, end)
    data = read_ETF(ticker)[start:end]

    fig = plt.figure(figsize=(14,6))
    fig.add_axes([0.05,0.68,0.94,0.3])
    for c in ['Close','Adj Close']:
        plt.plot(data.index, data[c], label=c)
    plt.xlim(data.index[0],data.index[-1])
    plt.xticks([])
    plt.ylabel("Price ($)")
    plt.legend(loc='best')

    weekly = resample(data, style='week', method='close')
    df = get_returns(weekly.Close, 'simple')

    fig.add_axes([0.05,0.38,0.94,0.3])
    m = moving_agg(df, window=52, step=1, func=np.sum)
    plt.plot(df.index[51:], m*100)
    plt.hlines(xmin=data.index[0], xmax=data.index[-1], y=0, linestyle='--')
    plt.xlim(data.index[0],data.index[-1])
    plt.xticks([])
    plt.ylabel("Annual Return (%)")
    plt.legend(loc='best')

    fig.add_axes([0.05,0.08,0.94,0.3])
    v = moving_agg(df, window=52, step=1, func=covariance)
    v = np.sqrt(v*52)
    plt.plot(df.index[51:], v*100)
    plt.xlim(data.index[0],data.index[-1])
    plt.ylabel("Volatility (%)")
    plt.gca().set_ylim(bottom=0)
    plt.legend(loc='best')

    corr = correlation(m, v)
    print("Correlation between return and volatility:", corr)
    plt.show()
    return corr
Exemple #3
0
def generate(tickers, features):
    """
    input:  tickers     a list of tickers of stocks/ETFs
            features    a list of feature names to be calculated
    Return a pandas DataFrame
    """
    from invest.get_data import read_ETF
    from time_series.functions import resample
    from invest.calculation import get_returns
    data = pd.DataFrame()
    for t in tickers:
        etf = read_ETF(t)
        weekly = resample(etf, style='week', method='close')
        ret = get_returns(weekly, style='simple')
        rv = get_return_vol(ret, scale=52, ret=True, plotit=False)
 def set_benchmark(self):
     ticker = self.benchmark.get().upper()
     if ticker == "":
         self._logger_.info("Remove benchmark")
         self._data_['benchmark'] = 0
     else:
         self._logger_.info("Set benchmark as {}".format(ticker))
         try:
             data = read_ETF(ticker, file_dir=path + "\\data_temp")
         except:
             self._logger_.error("Cannot load benchmark {}".format(ticker))
         else:
             self._data_['benchmark'] = get_returns(resample(
                 data.Close, column=None, style="week", method='close'),
                                                    style='simple',
                                                    fillna=False)
     self.update_plot()
 def initial_plot(self, column='Adj Close', style='week', start='2015-1-1'):
     self._logger_.debug("Initialize plots for portfolio window")
     tickers = self.select.get_right()
     self._data_ = get_returns(resample(read_portfolio(tickers,
                                                       column=column,
                                                       start=start),
                                        column=None,
                                        style=style,
                                        method='close'),
                               style='simple',
                               fillna=False)
     self._data_['benchmark'] = 0
     data = self._data_.iloc[-52:, :-1].dropna(axis=1, how='any')
     rv = get_return_vol(pd.concat([data * 3, -data], axis=1),
                         scale=52,
                         ret=True,
                         plotit=False)
     fig = return_vol(rv.Return, rv.Volatility, rv.index)
     fig.axes[0].plot([0], [0], 'r*')
     return fig, pie_plot([10, 6], labels=['a', 'b'])
Exemple #6
0
def holdings_performance(file, frame=None):
    """
    Calculate performance of current holdings.
    input:  file    a csv file containing all transactions
                    columns are Date, Ticker, Shares, Price
            frame   a tkinter frame to show results. Default None
    """
    logger = logging.getLogger(__name__)
    try:
        holdings = pd.read_csv(file, index_col=None, parse_dates=[0]).dropna()
    except Exception as err:
        logger.error("Cannot open holdings file {}".format(file))
        logger.error(err)
        return
    logger.debug("input transactions:")
    logger.debug("{} \t{}\t{}\t{}".format(*holdings.columns))
    for i in range(holdings.shape[0]):
        logger.debug("{} \t{} \t{} \t{}".format(holdings.iloc[i, 0].date(),
                                                *holdings.iloc[i, 1:]))
    tickers = holdings.Ticker.unique()
    if len(tickers) == 0:
        logger.info("No data provided")
        return

    from invest.get_data import get_latest_ETFs
    first_date = holdings.Date.min() - timedelta(days=7)
    data = get_latest_ETFs(tickers, start=first_date)

    from invest.calculation import add_dividend
    for t in tickers:
        add_dividend(data,
                     price=('Close', t),
                     adj=('Adj Close', t),
                     out=('Dividend', t))

    columns = [
        "Ticker", "Buy Date", "Buy Price", "Current Price", "Buy Shares",
        "Reinvested Shares", "Capital Gain", "Dividend Gain", "Total Gain"
    ]
    output = pd.DataFrame(columns=columns, index=holdings.index)
    output['Ticker'] = holdings.Ticker.values
    output['Buy Date'] = holdings.Date.dt.date.values
    output['Buy Price'] = holdings.Price.values
    for t in tickers:
        index = output.index[output.Ticker == t]
        output.loc[index, 'Current Price'] = data['Close'][t][-1]
        # calculate reinvested value
        # settlement date is two business days after buy date
        dates = holdings.Date[index]
        loc = np.array([data.index.get_loc(x) for x in dates]) + 2
        loc = np.clip(loc, 0, data.shape[0] - 1)
        output.loc[index, 'Close'] = data['Close'][t].iloc[loc].values
        output.loc[index, 'Adj Close'] = data['Adj Close'][t].iloc[loc].values
        output.loc[index, 'Dividend'] = [
            data.Dividend[t].iloc[d:].sum() for d in loc
        ]
    output['Current Price'] = output['Current Price'].astype(float)
    output['Buy Shares'] = holdings.Shares.values
    current_share = output['Close'] / output['Adj Close'] * output['Buy Shares']
    output['Reinvested Shares'] = np.round(
        current_share - output['Buy Shares'], 5)
    output['Value'] = current_share * output['Current Price']

    days = (date.today() - output['Buy Date']).dt.days / 365
    output['Capital Gain'] = (output['Current Price'] -
                              output['Buy Price']) * output['Buy Shares']
    output['Capital Gain %'] = (output['Current Price'] / output['Buy Price'] -
                                1) / days * 100
    output['Dividend Gain'] = output['Dividend'] * output['Buy Shares']
    output['Dividend Gain %'] = output['Dividend'] / output[
        'Buy Price'] / days * 100
    output['Total Gain'] = output['Current Price'] * current_share - output[
        'Buy Price'] * output['Buy Shares']
    out = file.replace('/', '\\').split('\\')[:-1]
    out.append("output.csv")
    out = '\\'.join(out)
    logger.info("Detailed investment summary saved in file {}".format(out))
    output.to_csv(out, index=False)
    summary = output.groupby('Ticker')['Value', 'Capital Gain',
                                       'Dividend Gain', 'Total Gain'].sum()

    summary['Dividend Gain'] = np.round(
        summary['Total Gain'] - summary['Capital Gain'], 2)
    summary['Value'] = np.round(summary['Value'], 2)
    summary['Capital Gain'] = np.round(summary['Capital Gain'], 2)
    summary['Total Gain'] = np.round(summary['Total Gain'], 2)

    from time_series.functions import resample
    from invest.calculation import get_returns
    weekly = resample(data, style="week", method='close')
    dates = list(np.sort(holdings.Date.unique()))
    dates.append(date.today())  # dates with transactions
    rets = pd.Series()  # weekly returns of total investments
    vals = pd.Series()  # total value of investments
    perf = pd.Series()  # performance, i.e. current value / invested value
    max_value = 0
    for d in range(len(dates) - 1):
        tickers = holdings.Ticker[holdings.Date <= dates[d]]
        from_date = dates[d] - np.timedelta64(7, 'D')
        to_date = dates[d + 1]
        shares = holdings.Shares[holdings.Date <= dates[d]]
        price = weekly['Close'][tickers][from_date:to_date]
        value = pd.Series(price.values.dot(shares.values), index=price.index)
        rets = rets.append(get_returns(value))
        price = data['Close'][tickers][dates[d]:dates[d + 1]]
        value = pd.Series(price.values.dot(shares.values), index=price.index)
        vals = vals.append(value)
        buys = holdings.Price[holdings.Date <= dates[d]]
        perf = perf.append(value / np.dot(buys.values, shares.values))

    xmin, xmax = vals.index[0], vals.index[-1]
    plt.figure(figsize=(15, 5))
    plt.plot(rets.index, rets * 100, color='#1f77b4')
    plt.hlines(y=0, xmin=xmin, xmax=xmax, linestyles='--', color='#1f77b4')
    plt.ylabel("Weekly Return (%)", fontsize=20, color='#1f77b4')
    plt.yticks(fontsize=14, color='#1f77b4')
    plt.legend()
    plt.twinx()
    plt.plot(perf.index, (perf - 1) * 100, color='#ff7f0e')
    plt.hlines(y=0, xmin=xmin, xmax=xmax, linestyles='--', color='#ff7f0e')
    # plt.gca().set_ylim(bottom=0)
    plt.ylabel("Total Return (%)", fontsize=20, color='#ff7f0e')
    plt.yticks(fontsize=14, color='#ff7f0e')
    plt.xlim(xmin, xmax)

    from gui.tkinter_widget import display_dataframe, plot_embed_toolbar
    import tkinter as tk
    if frame is None:
        root = tk.Tk()
    else:
        root = frame
    plot_embed_toolbar(root, fig=plt.gcf()).grid(row=0, column=0, columnspan=2)
    tk.Label(root,
             text="""Notes: \n
        'Annual Return' is just the rescaled weekly return.
        'Performance' is the total return percentage of the day
        (will be affected by buy/sell activities).\n
        """).grid(row=1, column=0, padx=10, pady=10)
    display_dataframe(root, summary).grid(row=1, column=1, padx=10, pady=10)
    total_value = output['Value'].sum()
    total_invest = (output['Buy Shares'] * output['Buy Price']).sum()
    total_gain = total_value - total_invest
    tk.Label(root, font='bold', text="total {:.2f} / {:.2f} = {:.2%}"\
        .format(total_gain, total_invest, total_gain/total_invest))\
        .grid(row=2, column=1, padx=10, pady=10)
    if frame is None:
        root.mainloop()