def main(): inputs = sys.argv[1:-1] output = sys.argv[-1] idx = 0 m = 1 M = len(inputs) for stack in inputs: N = spx.EMUtil.get_image_count(stack) for n in np.arange(N): img = spx.EMData() img.read_image(stack, n) # Write image to the particle stack: if idx == 0: # If this is the first image, we initiate as a normal .mrcs stack. img.write_image(output, idx) else: # Subsequent images are directly appended to the file: with open(output, 'ab') as mrcf: spx.EMNumPy.em2numpy(img).tofile(mrcf) idx += 1 print 'Appended image %d/%d from stack %d/%d. Total images appended: %d.' % (n+1, N, m, M, idx) m += 1 # Maybe it is better to update the NZ in header with the MRCheaderUpdate.py script? header = ioMRC.readMRCHeader( output ) header['dimensions'][0] = idx # Now we write the header back: with open( output, 'rb+' ) as mrcf: ioMRC.writeMRCHeader( mrcf, header, endchar = '<' ) print 'Done!'
def main(): progname = os.path.basename(sys.argv[0]) usage = progname + """ [options] <.mrc(s) file> Given an existing .mrc(s) file, will evaluate its size and number of images/slices (NZ) and UPDATE IN-PLACE (CAUTION!) corresponding header information. Reference for MRC format description: http://bio3d.colorado.edu/imod/doc/mrc_format.txt This script is based on Robb McLeod's ioMRC.py available at: https://bitbucket.org/emmrcz/python-mrcz NOTE: Only vanilla MRC(S) files are supported (i.e. compressed MRC formats not supported) """ parser = OptionParser(usage) parser.add_option( "--stats", action="store_true", help="Will update the statistics of the file (minval, maxval, avgval, std). May take some time depending on file size.", default=False ) parser.add_option( "--endian", metavar="le", type="string", default='le', help="MRC file endianness (default is little-endian)" ) (options, args) = parser.parse_args() command = ' '.join(sys.argv) if options.endian == 'le': endchar = '<' else: endchar = '>' fpath = args[0] # The file to be updated hsize = 1024 # Standard MRC header is 1024 bytes long S = os.path.getsize( fpath ) # Get the current size of the file in bytes # print S-hsize header = ioMRC.readMRCHeader( fpath, slices=0 )[0] # Read in the current header of the file if 'meta' not in header.keys(): header['meta'] = None sizeof = np.dtype(header['dtype']).itemsize # Get the size in bytes of each value in the current MRC format # print sizeof with open(fpath, 'rb+') as f: NX = header['dimensions'][2] NY = header['dimensions'][1] NZ = header['dimensions'][0] print('Current dimensions of MRC file: NX=%d,NY=%d,NZ=%d' % (NX,NY,NZ)) NZnew = ( S - hsize ) / ( NX*NY*sizeof ) # This will yield the actual number of Z slices print('New dimensions of MRC file: NX=%d,NY=%d,NZ=%d' % (NX,NY,NZnew)) header['dimensions'][0] = NZnew if options.stats: # Let's update the statistics of the stack/volume: header['meanImage'] = 0.0 f.seek(1024) for i in np.arange(NZnew): # We will read one image or slice at a time in order to save memory: image = np.fromfile( f, dtype=header['dtype'], count=NX*NY ) minImage = np.min(image) maxImage = np.max(image) meanImage = np.mean(image) if minImage < header['minImage']: header['minImage'] = minImage if maxImage > header['maxImage']: header['maxImage'] = maxImage header['meanImage'] += meanImage header['meanImage'] /= NZnew # Now we write the header back: ioMRC.writeMRCHeader( f, header, slices=0, endchar=endchar )
def main(): # Get arguments: folders = sys.argv[1] merge_dirfile = sys.argv[2] png_path = sys.argv[3] stack_path = sys.argv[4] stack_rootname = sys.argv[5] box_size = int(sys.argv[6]) phaori_shift = np.array([float(sys.argv[7].split(',')[0]), float(sys.argv[7].split(',')[1])]) # How many degrees to offset the phase origins in order to get a protein in the center of the particle for a zero-tilt image apix = float(sys.argv[8]) # pixel size in Angstroems microscope_voltage = float(sys.argv[9]) # microscope voltage in kV microscope_cs = float(sys.argv[10]) # microscope spherical aberration in mm ampcontrast = 1-float(sys.argv[11])**2 # amplitude contrast of CTF (obtained here from phase contrast) magnification = float(sys.argv[12]) sigcc = float(sys.argv[13]) if sys.argv[14] == 'y': invert_micrograph = True else: invert_micrograph = False if sys.argv[15] == 'y': normalize_box = True else: normalize_box = False if sys.argv[16] == 'y': calculate_defocus_tilted = True else: calculate_defocus_tilted = False if sys.argv[17] == 'y': save_phase_flipped = True else: save_phase_flipped = False if sys.argv[18] == 'y': save_wiener_filtered = True else: save_wiener_filtered = False sigma = float(sys.argv[19]) # Sigma for normalization of the windowed images (if normalize_box == True) if sys.argv[20] == 'Defocus/Lattice': tiltgeom = '' elif sys.argv[20] == 'Defocus': tiltgeom = 'DEFOCUS_' elif sys.argv[20] == 'Lattice': tiltgeom = 'LATTICE_' elif sys.argv[20] == 'Merge': tiltgeom = 'MERGE_' if sys.argv[21] == 'Micrograph': ctfcor = True stack_rootname = stack_rootname + '_ctfcor' else: ctfcor = False if sys.argv[22] == 'y': save_pick_fig = True else: save_pick_fig = False if sys.argv[23] == 'y': use_masked_image = True else: use_masked_image = False n_threads = int(sys.argv[24]) if n_threads < 1: n_threads = 1 this_thread = int(sys.argv[25]) # End arguments f = open(merge_dirfile,'r') img_dirs = f.readlines() f.close() # Constant parameters to be written on the .par file of this dataset: shx = 0.0 shy = 0.0 occ = 100.0 logp = 0 sig = 0.5 # This has nothing to do with the normalization SIGMA! score = 0.0 chg = 0.0 idx = 0 # box_fail = 0 phaori_err = 0 prog = 0.0 N = len(img_dirs) batch_size = round(float(N)/n_threads) first_img = int((this_thread-1) * batch_size) if this_thread < n_threads: last_img = int(first_img + batch_size) else: last_img = N img_dirs = img_dirs[first_img:last_img] n = first_img + 1 print '\nJob %d/%d picking particles from micrographs %d to %d...\n' % (this_thread, n_threads, n, last_img) f = open(stack_path+stack_rootname+'_1_r1-%.4d.par' % this_thread, 'w+') for d in img_dirs: d = d.strip() imname = d.split('/')[-1] try: # Read in all relevant image parameters: params = Read2dxCfgFile(folders+d+'/2dx_image.cfg') except: print '\nProblem with image %s!\n' % d continue if ctfcor: try: mrc = glob.glob(folders+d+'/image_ctfcor.mrc')[0] img = spx.get_image(mrc) # Read image bf = open(folders+d+'/image_ctfcor.box', 'w+') except: print '\nCTF-corrected micrograph not found for image %s!\n' % d continue else: if use_masked_image: # First we look for the masked, zero-padded, normalized micrograph: try: # # There might be some funny numbers appended to the file name so we have to look for the shortest one to get the right file: # mrclist = glob.glob(folders+d+'/m'+imname+'*.mrc') # lenlist = [] # for m in mrclist: # lenlist.append(len(m)) # shortest_idx = np.argsort(lenlist)[0] # # print mrclist[shortest_idx] # mrc = mrclist[shortest_idx] # bf = open(os.path.splitext(mrc)[0]+'.box', 'w+') # # mrc = sorted(glob.glob(folders+d+'/m'+imname+'*.mrc'))[0] # # bf = open(folders+d+'/m'+imname+'.box', 'w+') mrc = folders + d + '/' + params['imagename'] + '.mrc' img = spx.get_image(mrc) # Read image bf = open(folders + d + '/' + params['imagename'] + '.box', 'w+') except: # If it doesn't exist, we try the unmasked, zero-padded, normalized micrograph: try: # mrclist = glob.glob(folders+d+'/'+imname+'*.mrc') # lenlist = [] # for m in mrclist: # lenlist.append(len(m)) # shortest_idx = np.argsort(lenlist)[0] # # print mrclist[shortest_idx] # mrc = mrclist[shortest_idx] # bf = open(os.path.splitext(mrc)[0]+'.box', 'w+') # # mrc = sorted(glob.glob(folders+d+'/m'+imname+'*.mrc'))[0] # # bf = open(folders+d+'/m'+imname+'.box', 'w+') mrc = folders + d + '/' + params['nonmaskimagename'] + '.mrc' img = spx.get_image(mrc) # Read image bf = open(folders + d + '/' + params['nonmaskimagename'] + '.box', 'w+') except: # If neither exist we skip this image print '::\nProblem with image %s!\n' % d continue else: # If the user requires, we go directly to the unmasked, zero-padded, normalized micrograph: try: # mrclist = glob.glob(folders+d+'/'+imname+'*.mrc') # lenlist = [] # for m in mrclist: # lenlist.append(len(m)) # shortest_idx = np.argsort(lenlist)[0] # # print mrclist[shortest_idx] # mrc = mrclist[shortest_idx] # bf = open(os.path.splitext(mrc)[0]+'.box', 'w+') # # mrc = sorted(glob.glob(folders+d+'/m'+imname+'*.mrc'))[0] # # bf = open(folders+d+'/m'+imname+'.box', 'w+') mrc = folders + d + '/' + params['nonmaskimagename'] + '.mrc' img = spx.get_image(mrc) # Read image bf = open(folders + d + '/' + params['nonmaskimagename'] + '.box', 'w+') except: # If neither exist we skip this image print '::\nProblem with image %s!' % d print '::' continue print '::\nNow boxing unit cells of micrograph %d/%d.\n' % (n, N) print mrc try: if invert_micrograph: img = -1.0 * img imgarr = spx.EMNumPy.em2numpy(img) profile = glob.glob(folders+d+'/*profile.dat')[0] dat = ReadProfileDat(profile) ccmean = np.mean(dat[:,4]) ccstd = np.std(dat[:,4]) cc_thr = ccmean + sigcc * ccstd print ':\nImage average value:%.2f' % img['mean'] print ':Image standard deviation:%.2f' % img['sigma'] print ':' print ':CC scores average value:%.2f' % ccmean print ':CC scores standard deviation:%.2f' % ccstd print ':Only particles with CC score above %.2f will be picked.\n' % cc_thr # # Get several values related to defocus, astigmatism and tilting: # params = Read2dxCfgFile(folders+d+'/2dx_image.cfg') w = img.get_xsize() # Get the unit-cell vectors: if sum(params['PHAORI']) == 0: PhaOriX = 0 PhaOriY = 0 a = [0,0] b = [0,0] else: a,b = LatticeReciprocal2Real(params['u'], params['v'], w) # Convert from Numpy-array to list: a = [a[0], a[1]] b = [b[0], b[1]] x,y = CalculatePickingPositions(dat, a, b, w, params['PHAORI'], phaori_shift, params[tiltgeom+'TLTANG']) # Plot the picking profile: if save_pick_fig: meanimg = np.mean(imgarr) stdimg = np.std(imgarr) climimg = [meanimg - 2 * stdimg, meanimg + 2 * stdimg] fig1 = plt.figure() plt.imshow(imgarr, cmap=cm.gray, vmin=climimg[0], vmax=climimg[1]) Axes1 = fig1.gca() # The following values are constant within each crystal: phi = 90.0 - params[tiltgeom+'TAXA'] theta = params[tiltgeom+'TLTANG'] psi = 270.0 - params[tiltgeom+'TLTAXIS'] ang = params['AST_ANGLE'] m = 0 for i in np.arange(dat.shape[0]): try: # Adjust the picking coordinates for the .box file and picking plots: xbox = x[i] + w/2 - box_size/2 ybox = y[i] + w/2 - box_size/2 # if dat[i,4] < cc_thr or np.isnan(x[i]) or np.isnan(y[i]): if dat[i,4] < cc_thr: if save_pick_fig: # Write red patch on image to be saved as .png describing the picking positions: # Axes1.add_patch(patches.Circle((dat[i,2], dat[i,3]), edgecolor='red', facecolor='none', linewidth=0.2, radius=20)) Axes1.add_patch(patches.Rectangle(xy=(xbox, ybox), width=box_size, height=box_size, edgecolor='red', facecolor='none', linewidth=0.2)) else: box = spx.Util.window(img,int(box_size),int(box_size),1,int(round(x[i])),int(round(y[i]))) # Normalize box to zero mean and constant pre-defined sigma: if normalize_box: box = NormalizeStack([box], sigma)[0] if calculate_defocus_tilted and not ctfcor: RLDEF1,RLDEF2 = CalculateDefocusTilted(x[i], y[i], apix, params[tiltgeom+'TLTAXIS'], params[tiltgeom+'TLTANG'], params['DEFOCUS1'], params['DEFOCUS2']) else: RLDEF1 = params['DEFOCUS1'] RLDEF2 = params['DEFOCUS2'] # Write .par file with the parameters for each particle in the dataset: print >>f, ' %d' % (idx+1),' %.2f' % psi,' %.2f' % theta,' %.2f' % phi,' %.2f' % shx,' %.2f' % shy,' %d' % magnification,' %d' % n,' %.2f' % RLDEF1,' %.2f' % RLDEF2,' %.2f' % ang,' %.2f' % occ,' %d' % logp,' %.4f' % sig,' %.2f' % score,' %.2f' % chg # Write the picking information to the .box file: print >>bf, '%d' % xbox, '\t%d' % ybox, '\t%d' % box_size, '\t%d' % box_size # Write image to the particle stack: if idx == 0: # If this is the first image, we initiate as a normal .mrcs stack. box.write_image(stack_path+stack_rootname+'-%.4d.mrcs' % this_thread, idx) else: # Subsequent images are directly appended to the file: with open(stack_path+stack_rootname+'-%.4d.mrcs' % this_thread, 'ab') as mrcf: spx.EMNumPy.em2numpy(box).tofile(mrcf) if (save_phase_flipped or save_wiener_filtered) and not ctfcor: # Convert CTF parameters to SPARX convention: defocus = (RLDEF1+RLDEF2)/2 ast = RLDEF1-RLDEF2 if params['AST_ANGLE'] < 0.0: astang = 360.0 + params['AST_ANGLE'] else: astang = params['AST_ANGLE'] # Generate SPARX CTF object: p = [defocus * 1e-4, microscope_cs, microscope_voltage, apix, 0, ampcontrast * 100, ast * 1e-4, astang] spx.set_ctf(box, p) ctf = spx.generate_ctf(p) # Phase-flip the image: if save_phase_flipped and not ctfcor: boxctfcor = spx.filt_ctf(box, ctf,binary=1) if normalize_box: boxctfcor = NormalizeStack([boxctfcor], sigma)[0] # Write image to the particle stack: if idx == 0: # If this is the first image, we initiate as a normal .mrcs stack. boxctfcor.write_image( stack_path+stack_rootname+'_phase-flipped-%.4d.mrcs' % this_thread, idx ) else: # Subsequent images are directly appended to the file: with open( stack_path+stack_rootname+'_phase-flipped-%.4d.mrcs' % this_thread, 'ab' ) as mrcf: spx.EMNumPy.em2numpy(boxctfcor).tofile( mrcf ) # Wiener-filter the image: if save_wiener_filtered and not ctfcor: boxctfcor = spx.filt_ctf(box, ctf,binary=0) if normalize_box: boxctfcor = NormalizeStack([boxctfcor], sigma)[0] # Write image to the particle stack: if idx == 0: # If this is the first image, we initiate as a normal .mrcs stack. boxctfcor.write_image( stack_path+stack_rootname+'_wiener-filtered-%.4d.mrcs' % this_thread, idx ) else: # Subsequent images are directly appended to the file: with open( stack_path+stack_rootname+'_wiener-filtered-%.4d.mrcs' % this_thread, 'ab' ) as mrcf: spx.EMNumPy.em2numpy(boxctfcor).tofile( mrcf ) if save_pick_fig: # Write green patch on image to be saved as .png describing the picking positions: # Axes1.add_patch(patches.Circle((dat[i,2], dat[i,3]), edgecolor='lime', facecolor='none', linewidth=0.2, radius=20)) Axes1.add_patch(patches.Rectangle(xy=(xbox, ybox), width=box_size, height=box_size, edgecolor='lime', facecolor='none', linewidth=0.2)) m += 1 idx += 1 except RuntimeError: if save_pick_fig: # Write red patch on image to be saved as .png describing the picking positions: # Axes1.add_patch(patches.Circle((dat[i,2], dat[i,3]), edgecolor='red', facecolor='none', linewidth=0.2, radius=20)) Axes1.add_patch(patches.Rectangle(xy=(xbox, ybox), width=box_size, height=box_size, edgecolor='red', facecolor='none', linewidth=0.2)) print 'Failed to box CC peak (%d,%d) at position (%d,%d) in micrograph %d/%d!' % (dat[i,0], dat[i,1], int(round(x[i])), int(round(y[i])), n, N) print '\nBoxed %d/%d CC peaks from micrograph %d/%d.\n' % (m, i+1, n, N) # Update the counts in the MRC headers: # First the normal particle stack: header = ioMRC.readMRCHeader( stack_path+stack_rootname+'-%.4d.mrcs' % this_thread ) header['dimensions'][0] = idx # Now we write the header back: with open( stack_path+stack_rootname+'-%.4d.mrcs' % this_thread, 'rb+' ) as mrcf: ioMRC.writeMRCHeader( mrcf, header, endchar = '<' ) # Then the phase-flipped: if save_phase_flipped and not ctfcor: header = ioMRC.readMRCHeader( stack_path+stack_rootname+'_phase-flipped-%.4d.mrcs' % this_thread ) header['dimensions'][0] = idx # Now we write the header back: with open( stack_path+stack_rootname+'_phase-flipped-%.4d.mrcs' % this_thread, 'rb+' ) as mrcf: ioMRC.writeMRCHeader( mrcf, header, endchar = '<' ) # Then the Wiener-filtered: if save_wiener_filtered and not ctfcor: header = ioMRC.readMRCHeader( stack_path+stack_rootname+'_wiener-filtered-%.4d.mrcs' % this_thread ) header['dimensions'][0] = idx # Now we write the header back: with open( stack_path+stack_rootname+'_wiener-filtered-%.4d.mrcs' % this_thread, 'rb+' ) as mrcf: ioMRC.writeMRCHeader( mrcf, header, endchar = '<' ) # print '<<@progress: %d>>' % round(n*100.0/N) # Report progress to the GUI: prog += 75.0/N if prog >= 1.0: print '<<@progress: +%d>>' % round(prog) prog -= np.floor(prog) if save_pick_fig: fig1.savefig(png_path+'mic_%.3d_' % n+imname+'_picking.png', dpi=300) plt.close(fig1) n += 1 except RuntimeError: # print '::PROBLEM WITH MICROGRAPH %d/%d!!! Maybe it was not found?' % (n, N) # print '::' # print mrc print '\nPROBLEM WITH MICROGRAPH:' print '%s' % mrc print 'Maybe it was not found?' except ValueError: # print '::PROBLEM WITH CC PROFILE FOR IMAGE %d/%d!!!' % (n, N) # print '::' # print mrc print '\nPROBLEM WITH CC PROFILE FOR IMAGE:' print '%s' % mrc bf.close() # n += 1 # print '::Total boxed unit cells:%d' % idx # print '::Failed to box %d unit cells.' % box_fail # print '<<@progress: +%d>>' % round(prog/0.01) print '\nJob %d/%d finished picking particles.\n' % (this_thread, n_threads) f.close()
def main(): progname = os.path.basename(sys.argv[0]) usage = progname + """ [options] <.mrc(s) file> Given an existing .mrc(s) file, will evaluate its size and number of images/slices (NZ) and UPDATE IN-PLACE (CAUTION!) corresponding header information. Reference for MRC format description: http://bio3d.colorado.edu/imod/doc/mrc_format.txt This script is based on Robb McLeod's ioMRC.py available at: https://bitbucket.org/emmrcz/python-mrcz NOTE: Only vanilla MRC(S) files are supported (i.e. compressed MRC formats not supported) """ parser = OptionParser(usage) parser.add_option( "--stats", action="store_true", help="Will update the statistics of the file (minval, maxval, avgval, std). May take some time depending on file size.", default=False ) parser.add_option( "--endian", metavar="le", type="string", default='le', help="MRC file endianness (default is little-endian)" ) (options, args) = parser.parse_args() command = ' '.join(sys.argv) if options.endian == 'le': endchar = '<' else: endchar = '>' fpath = args[0] # The file to be updated hsize = 1024 # Standard MRC header is 1024 bytes long S = os.path.getsize( fpath ) # Get the current size of the file in bytes # print S-hsize header = ioMRC.readMRCHeader( fpath ) # Read in the current header of the file sizeof = np.dtype(header['dtype']).itemsize # Get the size in bytes of each value in the current MRC format # print sizeof with open(fpath, 'rb+') as f: NX = header['dimensions'][2] NY = header['dimensions'][1] NZ = header['dimensions'][0] print 'Current dimensions of MRC file: NX=%d,NY=%d,NZ=%d' % (NX,NY,NZ) NZnew = ( S - hsize ) / ( NX*NY*sizeof ) # This will yield the actual number of Z slices print 'New dimensions of MRC file: NX=%d,NY=%d,NZ=%d' % (NX,NY,NZnew) header['dimensions'][0] = NZnew if options.stats: # Let's update the statistics of the stack/volume: header['meanImage'] = 0.0 f.seek(1024) for i in np.arange(NZnew): # We will read one image or slice at a time in order to save memory: image = np.fromfile( f, dtype=header['dtype'], count=NX*NY ) minImage = np.min(image) maxImage = np.max(image) meanImage = np.mean(image) if minImage < header['minImage']: header['minImage'] = minImage if maxImage > header['maxImage']: header['maxImage'] = maxImage header['meanImage'] += meanImage header['meanImage'] /= NZnew # Now we write the header back: ioMRC.writeMRCHeader( f, header, endchar )
def main(): # Get arguments: stack_path = sys.argv[1] stack_rootname = sys.argv[2] + '_' + sys.argv[3] if sys.argv[4] == 'y': do_frc = True else: do_frc = False frc_folder = sys.argv[5] sigma = float( sys.argv[6] ) # Sigma for normalization of the windowed images (if normalize_box == True) sigma_rad = float( sys.argv[7] ) # Radius for normalization of the windowed images (if normalize_box == True), for estimating AVG and STD apix = float(sys.argv[8]) # pixel size in Angstroems thr = float(sys.argv[9]) # pixel size in Angstroems if sys.argv[10] == 'y': shuffle_order = True else: shuffle_order = False filter_type = sys.argv[11] res_cutoff = float(sys.argv[12]) n_threads = int(sys.argv[13]) if n_threads < 1: n_threads = 1 this_thread = int(sys.argv[14]) # End arguments stack_file = stack_path + stack_rootname + '.mrcs' f = open( stack_path + stack_rootname + '_crystal-avg_1_r1-%.4d.par' % this_thread, 'w+') # first = spx.EMData() # first.read_image(stack_file, 0) sys.stdout = open(os.devnull, "w") # Suppress output header = ioMRC.readMRCHeader(stack_file, slices=0)[0] sys.stdout = sys.__stdout__ par = np.loadtxt(stack_path + stack_rootname + '_1_r1.par', comments='C') labels = par[:, 7] X = np.unique(labels) XN = len(X) batch_size = int(round(float(XN) / n_threads)) first_img = (this_thread - 1) * batch_size if this_thread < n_threads: last_img = first_img + batch_size else: last_img = XN X = X[first_img:last_img] n = first_img + 1 print('\nJob %d/%d averaging particles from crystals %d to %d...\n' % (this_thread, n_threads, n, last_img)) prog = 0.0 j = 1 for x in X: print('::Averaging particles from crystal %d/%d...' % (x, XN)) img_list = np.where(labels == x)[0] if shuffle_order: np.random.seed( seed=n) # Fix random seed to get reproducible results np.random.shuffle(img_list) # avg = spx.EMData(first.get_xsize(),first.get_ysize()) # ioMRC header is Z,Y,X: avg = np.zeros([header['dimensions'][2], header['dimensions'][1]]) # sys.stdout = open(os.devnull, "w") # Suppress output # ptcls = ioMRC.readMRC(stack_file, idx=(img_list[0], img_list[-1]) )[0] # sys.stdout = sys.__stdout__ if do_frc: plt.figure() # odd = spx.EMData(first.get_xsize(),first.get_ysize()) # even = spx.EMData(first.get_xsize(),first.get_ysize()) odd = np.zeros([header['dimensions'][2], header['dimensions'][1]]) even = np.zeros([header['dimensions'][2], header['dimensions'][1]]) # odd = np.mean( ptcls[1::2,:,:], axis=0 ) # even = np.mean( ptcls[::2,:,:], axis=0 ) k = 1 for i in img_list: # img = spx.EMData() # img.read_image(stack_file, int(i)) sys.stdout = open(os.devnull, "w") # Suppress output img = ioMRC.readMRC(stack_file, idx=i)[0] sys.stdout = sys.__stdout__ avg += img if do_frc: if np.mod(k, 2) == 1: odd += img else: even += img k += 1 # Write .par file with the parameters for each particle in the dataset: # print >>f, ' %d' % (x),' %.2f' % par[img_list[0],1],' %.2f' % par[img_list[0],2],' %.2f' % par[img_list[0],3],' %.2f' % par[img_list[0],4],' %.2f' % par[img_list[0],5],' %d' % par[img_list[0],6],' %d' % par[img_list[0],7],' %.2f' % par[img_list[0],8],' %.2f' % par[img_list[0],9],' %.2f' % par[img_list[0],10],' %.2f' % par[img_list[0],11],' %d' % par[img_list[0],12],' %.4f' % par[img_list[0],13],' %.2f' % par[img_list[0],14],' %.2f' % par[img_list[0],15] print(' %d' % (j), ' %.2f' % par[img_list[0], 1], ' %.2f' % par[img_list[0], 2], ' %.2f' % par[img_list[0], 3], ' %.2f' % par[img_list[0], 4], ' %.2f' % par[img_list[0], 5], ' %d' % par[img_list[0], 6], ' %d' % par[img_list[0], 7], ' %.2f' % par[img_list[0], 8], ' %.2f' % par[img_list[0], 9], ' %.2f' % par[img_list[0], 10], ' %.2f' % par[img_list[0], 11], ' %d' % par[img_list[0], 12], ' %.4f' % par[img_list[0], 13], ' %.2f' % par[img_list[0], 14], ' %.2f' % par[img_list[0], 15], file=f) if do_frc: # NSAM = np.round( np.sqrt( np.sum( np.power( odd.shape, 2 ) ) ) / 2.0 / np.sqrt( 2.0 ) ).astype('int') # For cubic volumes this is just half the box size. NSAM = avg.shape[-1] // 2 freq = (np.arange(NSAM) / (2.0 * NSAM * apix)).reshape(NSAM, 1) freq[0] = 1.0 / 999 # Just to avoid dividing by zero later frc = util.FRC(odd, even) if filter_type == 'FRC': frc_weights = np.sqrt(2 * np.abs(frc) / (1 + np.abs(frc))) avg = util.RadialFilter(avg, frc_weights, return_filter=False) elif filter_type == 'FRC2': frc_weights = frc**2 avg = util.RadialFilter(avg, frc_weights, return_filter=False) if res_cutoff >= 0.0: avg = util.FilterCosine(avg, apix=apix, lp=res_cutoff, return_filter=False, width=5) # plt.plot(freq,frc[:NSAM],freq,np.sqrt(2 * np.abs(frc) / (1 + np.abs(frc)))[:NSAM],freq,frc[:NSAM]**2) plt.plot(freq, frc[:NSAM]) yvalues = [ i / 10.0 for i in np.arange(np.round(np.min(frc)) * 10.0, 11) ] yvalues.append(thr) plt.title('Fourier Ring Correlation - TLTANG = %.1f' % par[img_list[0], 2]) plt.ylabel('FRC') plt.xlabel('Spatial frequency (1/A)') # plt.ylim(0.0,1.0) plt.yticks(yvalues) plt.grid() # plt.legend(['FRC','FRC_weights','FRC^2']) plt.savefig(frc_folder + 'crystal_' + '%.3d' % x + '_' + sys.argv[3] + '_FRC.png', dpi=300) plt.close() j += 1 # if normalize_box: # box = NormalizeStack([box], sigma)[0] avg = util.NormalizeImg(avg, std=sigma, radius=sigma_rad) # avg = NormalizeStack([avg], sigma)[0] # avg.write_image(stack_path+stack_rootname+'_crystal-avg-%.4d.mrcs' % this_thread, j-1) sys.stdout = open(os.devnull, "w") # Suppress output ioMRC.writeMRC(avg, stack_path + stack_rootname + '_crystal-avg-%.4d.mrcs' % this_thread, dtype='float32', idx=j - 2) sys.stdout = sys.__stdout__ # Report progress to the GUI: prog += 90.0 / XN if prog >= 1.0: print('<<@progress: +%d>>' % round(prog)) prog -= np.floor(prog)