def process_file(wav_file):
    sound_handler = SoundHandler(
        WAV_FILES_LOCATION,
        wav_file["name"],
        wav_file["wav_bits"],
        wav_file["sample_rate"],
        wav_file["n_channels"])

    segment_size = int(SEGMENT_DURATION * wav_file["sample_rate"])

    feature_generator = FeatureGenerator(
        sound_handler, wav_file["timestamp"],
        wav_file["sample_rate"], CALIBRATION_FACTOR,
        segment_size, WINDOW_SIZE, WINDOW_OVERLAP, NFFT)

    results = feature_generator.generate()

    # extract sound's id from sound file name
    # (sound's name follow convention described in test/resources/README.md)
    sound_id = wav_file["name"][:-4]

    resultsHandler = ResultsHandler(
        sound_id,
        RESULTS_DESTINATION,
        segment_size,
        WINDOW_SIZE,
        WINDOW_OVERLAP,
        NFFT
    )

    resultsHandler.write(results)
def process_file(wav_config):
    print("Start processing {}".format(wav_config["name"]))
    tStart = time.time()

    sound_handler = SoundHandler(
        WAV_FILES_LOCATION,
        wav_config["name"],
        wav_config["wav_bits"],
        wav_config["sample_rate"],
        wav_config["n_channels"])

    segment_size = int(SEGMENT_DURATION * wav_config["sample_rate"])

    feature_generator = FeatureGenerator(
        sound_handler, wav_config["timestamp"],
        wav_config["sample_rate"], CALIBRATION_FACTOR,
        segment_size, WINDOW_SIZE, WINDOW_OVERLAP, NFFT)

    results = feature_generator.generate()

    # extract sound's id from sound file name
    # (sound's name follow convention described in test/resources/README.md)
    sound_id = wav_config["name"][:-4]

    resultsHandler = ResultsHandler(
        sound_id,
        RESULTS_DESTINATION,
        segment_size,
        WINDOW_SIZE,
        WINDOW_OVERLAP,
        NFFT
    )

    resultsHandler.write(results)

    duration = time.time() - tStart
    print("Finished processing {} in {}".format(wav_config["name"], duration))

    return duration
def process_file(task_config):
    print("Start processing {}".format(task_config["name"]))
    tStart = time()

    sound_handler = SoundHandler(task_config["location"], task_config["name"],
                                 task_config["wav_bits"],
                                 task_config["sample_rate"],
                                 task_config["n_channels"])

    segment_size = int(task_config["segment_duration"] *
                       task_config["sample_rate"])

    feature_generator = FeatureGenerator(
        sound_handler, task_config["timestamp"], task_config["sample_rate"],
        task_config["calibration_factor"], segment_size,
        task_config["window_size"], task_config["window_overlap"],
        task_config["nfft"])

    results = feature_generator.generate()

    # extract sound's id from sound file name
    # (sound's name follow convention described in test/resources/README.md)
    sound_id = task_config["name"][:-4]

    resultsHandler = ResultsHandler(sound_id,
                                    task_config["results_destination"],
                                    segment_size, task_config["window_size"],
                                    task_config["window_overlap"],
                                    task_config["nfft"])

    resultsHandler.write(results)

    duration = time() - tStart
    print("Finished processing {} in {}".format(task_config["name"], duration))

    return duration
Exemple #4
0
WAV_FILES = [{
    "name":
    file_metadata[0],
    "timestamp":
    parse(file_metadata[9] + " " + file_metadata[10] + " UTC"),
    "sample_rate":
    32768.0,
    "wav_bits":
    16,
    "n_channels":
    1
} for file_metadata in pd.read_csv(METADATA_FILE_PATH, delimiter=";").values]

for wav_file in WAV_FILES[:N_FILES]:
    sound_handler = SoundHandler(WAV_FILES_LOCATION, wav_file["name"],
                                 wav_file["wav_bits"], wav_file["sample_rate"],
                                 wav_file["n_channels"])

    segment_size = int(SEGMENT_DURATION * wav_file["sample_rate"])

    feature_generator = FeatureGenerator(sound_handler, wav_file["timestamp"],
                                         wav_file["sample_rate"],
                                         CALIBRATION_FACTOR, segment_size,
                                         WINDOW_SIZE, WINDOW_OVERLAP, NFFT)

    results = feature_generator.generate()

    # extract sound's id from sound file name
    # (sound's name follow convention described in test/resources/README.md)
    sound_id = wav_file["name"][:-4]