def prepare_data(args): batch_size = args.config.getint('train', 'batch_size') num_hidden = args.config.getint('arch', 'num_hidden') num_lstm_layer = args.config.getint('arch', 'num_lstm_layer') init_c = [('l%d_init_c' % l, (batch_size, num_hidden)) for l in range(num_lstm_layer)] init_h = [('l%d_init_h' % l, (batch_size, num_hidden)) for l in range(num_lstm_layer)] init_states = init_c + init_h file_test = args.config.get('data', 'train') file_format = args.config.get('data', 'format') feat_dim = args.config.getint('data', 'xdim') test_data_args = { "gpu_chunk": 32768, "lst_file": file_test, "file_format": file_format, "separate_lines": True, "has_labels": True } test_sets = DataReadStream(test_data_args, feat_dim) return (init_states, test_sets)
def prepare_data(args): batch_size = args.config.getint('train', 'batch_size') num_hidden = args.config.getint('arch', 'num_hidden') num_hidden_proj = args.config.getint('arch', 'num_hidden_proj') num_lstm_layer = args.config.getint('arch', 'num_lstm_layer') init_c = [('l%d_init_c' % l, (batch_size, num_hidden)) for l in range(num_lstm_layer)] if num_hidden_proj > 0: init_h = [('l%d_init_h' % l, (batch_size, num_hidden_proj)) for l in range(num_lstm_layer)] else: init_h = [('l%d_init_h' % l, (batch_size, num_hidden)) for l in range(num_lstm_layer)] init_states = init_c + init_h file_train = args.config.get('data', 'train') file_dev = args.config.get('data', 'dev') file_format = args.config.get('data', 'format') feat_dim = args.config.getint('data', 'xdim') train_data_args = { "gpu_chunk": 32768, "lst_file": file_train, "file_format": file_format, "separate_lines": True } dev_data_args = { "gpu_chunk": 32768, "lst_file": file_dev, "file_format": file_format, "separate_lines": True } train_sets = DataReadStream(train_data_args, feat_dim) dev_sets = DataReadStream(dev_data_args, feat_dim) return (init_states, train_sets, dev_sets)