Exemple #1
0
    def get_features(self, ram=128):
        """
        get features
        """
        import os
        import multiprocessing as mp
        from iota2.Common.OtbAppBank import CreateConcatenateImagesApplication
        from iota2.Common.OtbAppBank import computeUserFeatures
        from iota2.Common.OtbAppBank import CreateIota2FeatureExtractionApplication
        from iota2.Common.OtbAppBank import getInputParameterOutput
        from iota2.Common.FileUtils import ensure_dir
        from iota2.Common.OtbAppBank import executeApp
        features_dir = os.path.join(self.features_dir, "tmp")
        ensure_dir(features_dir, raise_exe=False)
        features_out = os.path.join(features_dir, self.features_names)

        # ~ features = self.cfg_IOTA2.getParam("GlobChain", "features")
        # ~ enable_gapFilling = self.cfg_IOTA2.getParam("GlobChain",
        # ~ "useGapFilling")
        # ~ hand_features_flag = self.cfg_IOTA2.getParam('GlobChain',
        # ~ 'useAdditionalFeatures')

        # input
        (in_stack, in_stack_dep
         ), in_stack_features_labels = self.get_time_series_gapfilling()
        _, dates_enabled = self.write_interpolation_dates_file()

        if not self.enable_gapfilling:
            (in_stack,
             in_stack_dep), in_stack_features_labels = self.get_time_series()
            _, dates_enabled = self.write_dates_file()

        if self.write_outputs_flag is False:
            in_stack.Execute()
        else:
            in_stack_raster = in_stack.GetParameterValue(
                getInputParameterOutput(in_stack))
            if not os.path.exists(in_stack_raster):
                # in_stack.ExecuteAndWriteOutput()
                multi_proc = mp.Process(target=executeApp, args=[in_stack])
                multi_proc.start()
                multi_proc.join()
            if os.path.exists(in_stack_raster):
                in_stack = in_stack_raster
        # output
        app_dep = []
        if self.hand_features_flag:
            # ~ hand_features = self.cfg_IOTA2.getParam("Sentinel_2",
            # ~ "additionalFeatures")
            comp = len(
                self.stack_band_position) if not self.extracted_bands else len(
                    self.extracted_bands)
            (user_date_features, fields_userfeat, user_feat_date,
             stack) = computeUserFeatures(in_stack, dates_enabled, comp,
                                          self.hand_features.split(","))
            user_date_features.Execute()
            app_dep.append([user_date_features, user_feat_date, stack])

        if self.features:
            bands_avail = self.stack_band_position
            if self.extracted_bands:
                bands_avail = [
                    band_name for band_name, _ in self.extracted_bands
                ]
                # check mandatory bands
                if "B4" not in bands_avail:
                    raise Exception(
                        "red band (B4) is needed to compute features")
                if "B8" not in bands_avail:
                    raise Exception(
                        "nir band (B8) is needed to compute features")
                if "B11" not in bands_avail:
                    raise Exception(
                        "swir band (B11) is needed to compute features")

            feat_parameters = {
                "in": in_stack,
                "out": features_out,
                "comp": len(bands_avail),
                "red": bands_avail.index("B4") + 1,
                "nir": bands_avail.index("B8") + 1,
                "swir": bands_avail.index("B11") + 1,
                "copyinput": self.copy_input,
                "relrefl": self.rel_refl,
                "keepduplicates": self.keep_dupl,
                "acorfeat": self.acorfeat,
                "pixType": "int16",
                "ram": str(ram)
            }

            features_app = CreateIota2FeatureExtractionApplication(
                feat_parameters)
            if self.copy_input is False:
                in_stack_features_labels = []
            features_labels = (
                in_stack_features_labels +
                self.get_features_labels(dates_enabled, self.rel_refl,
                                         self.keep_dupl, self.copy_input))
        else:
            features_app = in_stack
            features_labels = in_stack_features_labels

        app_dep.append([in_stack, in_stack_dep])

        if self.hand_features_flag:
            features_app.Execute()
            app_dep.append(features_app)
            features_app = CreateConcatenateImagesApplication({
                "il": [features_app, user_date_features],
                "out":
                features_out,
                "ram":
                str(ram)
            })
            features_labels += fields_userfeat
        return (features_app, app_dep), features_labels
Exemple #2
0
def slicSegmentation(tile_name: str,
                     output_path: str,
                     sensors_parameters: sensors_params,
                     ram: Optional[int] = 128,
                     working_dir: Optional[Union[str, None]] = None,
                     force_spw: Optional[Union[int, None]] = None,
                     logger=LOGGER):
    """generate segmentation using SLIC algorithm

    Parameters
    ----------
    tile_name : string
        tile's name
    output_path : string
        iota2 output path
    sensors_parameters : dict
        sensors parameters description
    ram : int
        available ram
    working_dir : string
        directory to store temporary data
    force_spw : int
        force segments' spatial width
    logger : logging
        root logger
    """
    import math
    import shutil
    from iota2.Common.GenerateFeatures import generateFeatures
    from iota2.Common.OtbAppBank import CreateSLICApplication
    from iota2.Common.OtbAppBank import getInputParameterOutput
    from iota2.Common.FileUtils import ensure_dir

    SLIC_NAME = "SLIC_{}.tif".format(tile_name)

    all_features, feat_labels, dep = generateFeatures(
        working_dir,
        tile_name,
        sar_optical_post_fusion=False,
        output_path=output_path,
        sensors_parameters=sensors_parameters,
        mode="usually")
    all_features.Execute()

    spx, _ = all_features.GetImageSpacing(
        getInputParameterOutput(all_features))

    tmp_dir = working_dir
    if working_dir is None:
        tmp_dir = os.path.join(output_path, "features", tile_name, "tmp",
                               "SLIC_TMPDIR")
    else:
        tmp_dir = os.path.join(working_dir, tile_name)

    ensure_dir(tmp_dir)

    slic_seg_path = os.path.join(output_path, "features", tile_name, "tmp",
                                 SLIC_NAME)

    features_ram_estimation = all_features.PropagateRequestedRegion(
        key="out", region=all_features.GetImageRequestedRegion("out"))
    # increase estimation...
    features_ram_estimation = features_ram_estimation * 1.5
    xy_tiles = math.ceil(
        math.sqrt(float(features_ram_estimation) / (float(ram) * 1024**2)))
    slic_parameters = {
        "in": all_features,
        "tmpdir": tmp_dir,
        "spw": force_spw if force_spw else int(spx),
        "tiling": "manual",
        "tiling.manual.ny": int(xy_tiles),
        "tiling.manual.nx": int(xy_tiles),
        "out": slic_seg_path
    }
    slic_seg = CreateSLICApplication(slic_parameters)

    if not os.path.exists(slic_seg_path):
        logger.info("Processing SLIC segmentation : {}\n\t\t\
                 with parameters : {}".format(tile_name, slic_parameters))
        slic_seg.ExecuteAndWriteOutput()

    if working_dir is None:
        shutil.rmtree(tmp_dir)
Exemple #3
0
    def get_time_series_gapfilling(self, ram=128):
        """
        get_time_series_gapfilling
        """
        import os
        import multiprocessing as mp
        from iota2.Common.OtbAppBank import CreateImageTimeSeriesGapFillingApplication
        from iota2.Common.OtbAppBank import getInputParameterOutput
        from iota2.Common.FileUtils import ensure_dir
        from iota2.Common.OtbAppBank import executeApp

        gap_dir = os.path.join(self.features_dir, "tmp")
        ensure_dir(gap_dir, raise_exe=False)
        gap_out = os.path.join(gap_dir, self.time_series_gapfilling_name)

        dates_interp_file, dates_interp = self.write_interpolation_dates_file()
        dates_in_file, _ = self.write_dates_file()

        masks, masks_dep, _ = self.get_time_series_masks()
        (time_series, time_series_dep), _ = self.get_time_series()

        # inputs
        if self.write_outputs_flag is False:
            time_series.Execute()
            masks.Execute()
        else:
            time_series_raster = time_series.GetParameterValue(
                getInputParameterOutput(time_series))
            masks_raster = masks.GetParameterValue(
                getInputParameterOutput(masks))
            if not os.path.exists(masks_raster):
                multi_proc = mp.Process(target=executeApp, args=[masks])
                multi_proc.start()
                multi_proc.join()
            if not os.path.exists(time_series_raster):
                # time_series.ExecuteAndWriteOutput()
                multi_proc = mp.Process(target=executeApp, args=[time_series])
                multi_proc.start()
                multi_proc.join()
            if os.path.exists(masks_raster):
                masks = masks_raster
            if os.path.exists(time_series_raster):
                time_series = time_series_raster

        comp = len(
            self.stack_band_position) if not self.extracted_bands else len(
                self.extracted_bands)

        gap = CreateImageTimeSeriesGapFillingApplication({
            "in": time_series,
            "mask": masks,
            "comp": str(comp),
            "it": "linear",
            "id": dates_in_file,
            "od": dates_interp_file,
            "out": gap_out,
            "ram": str(ram),
            "pixType": "int16"
        })
        app_dep = [time_series, masks, masks_dep, time_series_dep]

        bands = self.stack_band_position
        if self.extracted_bands:
            bands = [band_name for band_name, band_pos in self.extracted_bands]

        features_labels = [
            "{}_{}_{}".format(self.__class__.name, band_name, date)
            for date in dates_interp for band_name in bands
        ]
        return (gap, app_dep), features_labels
Exemple #4
0
def launchClassification(tempFolderSerie,
                         Classifmask,
                         model,
                         stats,
                         outputClassif,
                         confmap,
                         pathWd,
                         classifier_type: str,
                         tile: str,
                         proba_map_expected: bool,
                         dimred,
                         sar_optical_post_fusion,
                         output_path: str,
                         data_field: str,
                         write_features: bool,
                         reduction_mode,
                         sensors_parameters,
                         pixType,
                         MaximizeCPU=True,
                         RAM=500,
                         auto_context={},
                         logger=LOGGER):
    """
    """
    from iota2.Common import GenerateFeatures as genFeatures
    from iota2.Sampling import DimensionalityReduction as DR
    from iota2.Common.OtbAppBank import getInputParameterOutput

    output_directory = os.path.join(output_path, "classif")

    # wMode = cfg.getParam('GlobChain', 'writeOutputs')
    featuresPath = os.path.join(output_path, "features")

    wd = pathWd
    if not pathWd:
        wd = featuresPath

    wd = os.path.join(featuresPath, tile)

    if pathWd:
        wd = os.path.join(pathWd, tile)
        if not os.path.exists(wd):
            try:
                os.mkdir(wd)
            except Exception:
                logger.warning(f"{wd} Allready exists")

    mode = "usually"
    if "SAR.tif" in outputClassif:
        mode = "SAR"

    AllFeatures, _, dep_features = genFeatures.generateFeatures(
        pathWd=wd,
        tile=tile,
        sar_optical_post_fusion=sar_optical_post_fusion,
        output_path=output_path,
        sensors_parameters=sensors_parameters,
        mode=mode)

    feature_raster = AllFeatures.GetParameterValue(
        getInputParameterOutput(AllFeatures))
    if write_features:
        if not os.path.exists(feature_raster):
            AllFeatures.ExecuteAndWriteOutput()
        AllFeatures = feature_raster
    else:
        AllFeatures.Execute()

    ClassifInput = AllFeatures

    if dimred:
        logger.debug("Classification model : {}".format(model))
        dimRedModelList = DR.get_dim_red_models_from_classification_model(
            model)
        logger.debug("Dim red models : {}".format(dimRedModelList))
        [ClassifInput,
         other_dep] = DR.apply_dimensionality_reduction_to_feature_stack(
             reduction_mode, output_path, AllFeatures, dimRedModelList)
        if write_features:
            ClassifInput.ExecuteAndWriteOutput()
        else:
            ClassifInput.Execute()

    iota2_samples_dir = os.path.join(output_path, "learningSamples")
    models_class = get_class_by_models(
        iota2_samples_dir,
        data_field,
        model=model if proba_map_expected else None)
    classif = iota2Classification(ClassifInput,
                                  classifier_type,
                                  model,
                                  tile,
                                  output_directory,
                                  models_class,
                                  proba_map=proba_map_expected,
                                  working_directory=pathWd,
                                  classif_mask=Classifmask,
                                  pixType=pixType,
                                  stat_norm=stats,
                                  RAM=RAM,
                                  mode=mode,
                                  auto_context=auto_context)
    classif.generate()
Exemple #5
0
    def get_features(self, ram=128, logger=LOGGER):
        """get sar features
        """
        import configparser
        from iota2.Common.FileUtils import getNbDateInTile, FileSearch_AND
        from iota2.Common.OtbAppBank import CreateConcatenateImagesApplication
        from iota2.Common.OtbAppBank import generateSARFeat_dates
        from iota2.Common.OtbAppBank import getInputParameterOutput

        if self.use_gapfilling:
            (s1_data,
             dependancies), s1_labels = self.get_time_series_gapFilling(ram)
        else:
            (s1_data, dependancies), s1_labels = self.get_time_series(ram)
        config = configparser.ConfigParser()
        config.read(self.s1_cfg)

        sar_features_expr = None
        if config.has_option("Features", "expression"):
            sar_features_expr_cfg = config.get("Features", "expression")
            if not "none" in sar_features_expr_cfg.lower():
                sar_features_expr = sar_features_expr_cfg.split(",")

        dependancies = [dependancies]
        s1_features = []
        sar_time_series = {
            "asc": {
                "vv": {
                    "App": None,
                    "availDates": None
                },
                "vh": {
                    "App": None,
                    "availDates": None
                }
            },
            "des": {
                "vv": {
                    "App": None,
                    "availDates": None
                },
                "vh": {
                    "App": None,
                    "availDates": None
                }
            }
        }
        for sensor_mode, time_series_app in list(s1_data.items()):
            _, polarisation, orbit = sensor_mode.split("_")
            # inputs
            if self.write_outputs_flag is False:
                time_series_app.Execute()
            else:
                time_series_raster = time_series_app.GetParameterValue(
                    getInputParameterOutput(time_series_app))
                if not os.path.exists(time_series_raster):
                    time_series_app.ExecuteAndWriteOutput()
                if os.path.exists(time_series_raster):
                    time_series_app = time_series_raster

            sar_time_series[orbit.lower()][
                polarisation.lower()]["App"] = time_series_app

            s1_features.append(time_series_app)
            dependancies.append(time_series_app)
            if self.use_gapfilling:
                date_file = FileSearch_AND(
                    self.features_dir, True,
                    "{}_{}_dates_interpolation.txt".format(
                        polarisation.lower(), orbit.upper()))[0]
            else:
                tar_dir = os.path.join(config.get("Paths", "output"),
                                       self.tile_name[1:])
                date_file = FileSearch_AND(
                    tar_dir, True,
                    "{}_{}_dates_input.txt".format(polarisation.lower(),
                                                   orbit.upper()))[0]
            sar_time_series[orbit.lower()][
                polarisation.lower()]["availDates"] = getNbDateInTile(
                    date_file, display=False, raw_dates=True)
        features_labels = []
        for sensor_mode, features in list(s1_labels.items()):
            features_labels += features
        if sar_features_expr:
            sar_user_features_raster = os.path.join(
                self.features_dir, "tmp", self.user_sar_features_name)
            user_sar_features, user_sar_features_lab = generateSARFeat_dates(
                sar_features_expr, sar_time_series, sar_user_features_raster)
            if self.write_outputs_flag is False:
                user_sar_features.Execute()
            else:
                if not os.path.exists(sar_user_features_raster):
                    user_sar_features.ExecuteAndWriteOutput()
                if os.path.exists(sar_user_features_raster):
                    user_sar_features = sar_user_features_raster
            dependancies.append(user_sar_features)
            s1_features.append(user_sar_features)
            features_labels += user_sar_features_lab
        sar_features_raster = os.path.join(self.features_dir, "tmp",
                                           self.sar_features_name)
        sar_features = CreateConcatenateImagesApplication({
            "il": s1_features,
            "out": sar_features_raster,
            "ram": str(ram)
        })
        return (sar_features, dependancies), features_labels
Exemple #6
0
    def get_time_series_gapFilling(self, ram=128):
        """
        Due to the SAR data, time series must be split by polarisation
        and orbit (ascending / descending)
        """
        import configparser

        from iota2.Common.FileUtils import getNbDateInTile
        from iota2.Common.OtbAppBank import getSARstack
        from iota2.Common.OtbAppBank import CreateConcatenateImagesApplication
        from iota2.Common.OtbAppBank import CreateImageTimeSeriesGapFillingApplication
        from iota2.Common.OtbAppBank import getInputParameterOutput

        (all_filtered, all_masks, interp_date_files,
         input_date_files) = getSARstack(self.s1_cfg,
                                         self.tile_name,
                                         self.all_tiles.split(" "),
                                         os.path.join(self.i2_output_path,
                                                      "features"),
                                         workingDirectory=None)
        # to be clearer
        s1_data = OrderedDict()
        s1_labels = OrderedDict()

        config = configparser.ConfigParser()
        config.read(self.s1_cfg)

        interpolation_method = "linear"
        if config.has_option("Processing", "gapFilling_interpolation"):
            interpolation_method = config.get("Processing",
                                              "gapFilling_interpolation")
        dependancies = []

        for filtered, masks, interp_dates, in_dates in zip(
                all_filtered, all_masks, interp_date_files, input_date_files):
            sar_mode = os.path.basename(
                filtered.GetParameterValue("outputstack"))
            sar_mode = "_".join(os.path.splitext(sar_mode)[0].split("_")[0:-1])
            polarisation = sar_mode.split("_")[1]
            orbit = sar_mode.split("_")[2]

            gapfilling_orbit_pol_name_masks = f"{self.gapfilling_orbit_pol_name_mask}_{orbit}_{polarisation}.tif"
            gapfilling_raster_mask = os.path.join(
                self.features_dir, "tmp", gapfilling_orbit_pol_name_masks)

            masks_stack = CreateConcatenateImagesApplication({
                "il": masks,
                "out": gapfilling_raster_mask,
                "ram": str(ram)
            })

            if self.write_outputs_flag is False:
                filtered.Execute()
                masks_stack.Execute()
            else:
                filtered_raster = filtered.GetParameterValue(
                    getInputParameterOutput(filtered))
                masks_stack_raster = masks_stack.GetParameterValue(
                    getInputParameterOutput(masks_stack))
                if not os.path.exists(masks_stack_raster):
                    masks_stack.ExecuteAndWriteOutput()
                if not os.path.exists(filtered_raster):
                    filtered.ExecuteAndWriteOutput()
                if os.path.exists(masks_stack_raster):
                    masks_stack = masks_stack_raster
                if os.path.exists(filtered_raster):
                    filtered = filtered_raster
            dependancies.append((filtered, masks_stack))
            gapfilling_orbit_pol_name = f"{self.gapfilling_orbit_pol_name}_{orbit}_{polarisation}.tif"
            gapfilling_raster = os.path.join(self.features_dir, "tmp",
                                             gapfilling_orbit_pol_name)

            gap_app = CreateImageTimeSeriesGapFillingApplication({
                "in":
                filtered,
                "mask":
                masks_stack,
                "it":
                interpolation_method,
                "id":
                in_dates,
                "od":
                interp_dates,
                "comp":
                str(1),
                "out":
                gapfilling_raster
            })
            s1_data[sar_mode] = gap_app

            sar_dates = sorted(getNbDateInTile(interp_dates,
                                               display=False,
                                               raw_dates=True),
                               key=lambda x: int(x))
            labels = [
                "{}_{}_{}_{}".format(self.__class__.name, orbit, polarisation,
                                     date).lower() for date in sar_dates
            ]
            s1_labels[sar_mode] = labels
        return (s1_data, dependancies), s1_labels
Exemple #7
0
def generateFeatures(pathWd: str,
                     tile: str,
                     sar_optical_post_fusion: bool,
                     output_path: str,
                     sensors_parameters: sensors_params,
                     mode: Optional[str] = "usually"):
    """
    usage : Function use to compute features according to a configuration file

    Parameters
    ----------
    pathWd : str
        path to a working directory
    tile : str
        tile's name
    sar_optical_post_fusion : bool
        flag use to remove SAR data from features
    mode : str
        'usually' / 'SAR' used to get only sar features
    """
    from iota2.Common.OtbAppBank import getInputParameterOutput
    from iota2.Sensors.Sensors_container import sensors_container
    from iota2.Common.OtbAppBank import CreateConcatenateImagesApplication

    LOGGER.info(f"prepare features for tile : {tile}")

    sensor_tile_container = sensors_container(tile, pathWd, output_path,
                                              **sensors_parameters)

    feat_labels = []
    dep = []
    feat_app = []
    if mode == "usually" and sar_optical_post_fusion is False:
        sensors_features = sensor_tile_container.get_sensors_features(
            available_ram=1000)
        for _, ((sensor_features, sensor_features_dep),
                features_labels) in sensors_features:
            sensor_features.Execute()
            feat_app.append(sensor_features)
            dep.append(sensor_features_dep)
            feat_labels = feat_labels + features_labels
    elif mode == "usually" and sar_optical_post_fusion is True:
        sensor_tile_container.remove_sensor("Sentinel1")
        sensors_features = sensor_tile_container.get_sensors_features(
            available_ram=1000)
        for _, ((sensor_features, sensor_features_dep),
                features_labels) in sensors_features:
            sensor_features.Execute()
            feat_app.append(sensor_features)
            dep.append(sensor_features_dep)
            feat_labels = feat_labels + features_labels
    elif mode == "SAR":
        sensor = sensor_tile_container.get_sensor("Sentinel1")
        (sensor_features,
         sensor_features_dep), feat_labels = sensor.get_features(ram=1000)
        sensor_features.Execute()
        feat_app.append(sensor_features)
        dep.append(sensor_features_dep)

    dep.append(feat_app)

    features_name = "{}_Features.tif".format(tile)
    features_dir = os.path.join(output_path, "features", tile, "tmp")
    features_raster = os.path.join(features_dir, features_name)

    if len(feat_app) > 1:
        all_features = CreateConcatenateImagesApplication({
            "il":
            feat_app,
            "out":
            features_raster
        })
    else:
        all_features = sensor_features
        output_param_name = getInputParameterOutput(sensor_features)
        all_features.SetParameterString(output_param_name, features_raster)
    return all_features, feat_labels, dep