Exemple #1
0
 def test_comment(self):
     cell_method_strings = [
         "time: maximum (interval: 1 hr comment: first bit) "
         "time: mean (interval: 1 day comment: second bit)",
         "time : maximum (interval: 1 hr comment: first bit) "
         "time: mean (interval: 1 day comment: second bit)",
         "time: maximum (interval: 1 hr comment: first bit) "
         "time : mean (interval: 1 day comment: second bit)",
         "time : maximum (interval: 1 hr comment: first bit) "
         "time : mean (interval: 1 day comment: second bit)",
     ]
     expected = (
         CellMethod(
             method="maximum",
             coords="time",
             intervals="1 hr",
             comments="first bit",
         ),
         CellMethod(
             method="mean",
             coords="time",
             intervals="1 day",
             comments="second bit",
         ),
     )
     for cell_method_str in cell_method_strings:
         res = parse_cell_methods(cell_method_str)
         self.assertEqual(res, expected)
 def test_simple(self):
     cell_method_strings = [
         'time: mean',
         'time : mean',
     ]
     expected = (CellMethod(method='mean', coords='time'), )
     for cell_method_str in cell_method_strings:
         res = parse_cell_methods(cell_method_str)
         self.assertEqual(res, expected)
Exemple #3
0
 def test_simple(self):
     cell_method_strings = [
         "time: mean",
         "time : mean",
     ]
     expected = (CellMethod(method="mean", coords="time"),)
     for cell_method_str in cell_method_strings:
         res = parse_cell_methods(cell_method_str)
         self.assertEqual(res, expected)
 def test_simple(self):
     cell_method_strings = [
         'time: mean',
         'time : mean',
         ]
     expected = (CellMethod(method='mean', coords='time'),)
     for cell_method_str in cell_method_strings:
         res = parse_cell_methods('test_var', cell_method_str)
         self.assertEqual(res, expected)
 def test_portions_of_cells(self):
     cell_method_strings = [
         'area: mean where sea_ice over sea',
         'area : mean where sea_ice over sea',
     ]
     expected = (CellMethod(method='mean where sea_ice over sea',
                            coords='area'), )
     for cell_method_str in cell_method_strings:
         res = parse_cell_methods(cell_method_str)
         self.assertEqual(res, expected)
 def test_with_interval(self):
     cell_method_strings = [
         'time: variance (interval: 1 hr)',
         'time : variance (interval: 1 hr)',
         ]
     expected = (CellMethod(method='variance', coords='time',
                            intervals='1 hr'),)
     for cell_method_str in cell_method_strings:
         res = parse_cell_methods('test_var', cell_method_str)
         self.assertEqual(res, expected)
 def test_portions_of_cells(self):
     cell_method_strings = [
         'area: mean where sea_ice over sea',
         'area : mean where sea_ice over sea',
         ]
     expected = (CellMethod(method='mean where sea_ice over sea',
                            coords='area'),)
     for cell_method_str in cell_method_strings:
         res = parse_cell_methods('test_var', cell_method_str)
         self.assertEqual(res, expected)
    def _load_data(self, array_path, group_dims, grid_mapping,
                   attr_name=None, separator='__', handle_nan=None):
        """
        Create an Iris cube from a TileDB array describing a data variable and
        pre-loaded dimension-describing coordinates.

        TODO not handled here: aux coords and dims, cell measures, aux factories.

        """
        single_attr_name = 'dataset'
        if attr_name is None:
            attr_metadata, lazy_data = self._from_tdb_array(array_path, single_attr_name,
                                                            to_dask=True, handle_nan=handle_nan)
            metadata = attr_metadata
            attr_name = metadata.pop(single_attr_name)
        else:
            attr_metadata, lazy_data = self._from_tdb_array(array_path,
                                                            single_attr_name,
                                                            array_name=attr_name,
                                                            to_dask=True,
                                                            handle_nan=handle_nan)
            metadata = {}
            for key, value in attr_metadata.items():
                # Varname-specific keys are of form `keyname__attrname`; we only want `keyname`.
                # TODO pass the separator character to the method.
                try:
                    key_name, key_attr = key.split(separator)
                    if key_attr == attr_name:
                        metadata[key_name] = value
                except ValueError:
                    # Not all keys are varname-specific; we want all of these.
                    metadata[key] = value

        cell_methods = parse_cell_methods(metadata.pop('cell_methods', None))
        dim_names = metadata.pop('dimensions').split(',')
        # Dim Coords And Dims (mapping of coords to cube axes).
        dcad = [(group_dims[name], i) for i, name in enumerate(dim_names)]
        safe_attrs = self._handle_attributes(metadata,
                                             exclude_keys=['dataset', 'multiattr', 'grid_mapping'])
        std_name = metadata.pop('standard_name', None)
        long_name = metadata.pop('long_name', None)
        var_name = metadata.pop('var_name', None)
        if all(itm is None for itm in [std_name, long_name, var_name]):
            long_name = attr_name

        cube = Cube(lazy_data,
                    standard_name=std_name,
                    long_name=long_name,
                    var_name=var_name,
                    units=metadata.pop('units', '1'),
                    dim_coords_and_dims=dcad,
                    cell_methods=cell_methods,
                    attributes=safe_attrs)
        cube.coord_system = grid_mapping
        return cube
 def test_with_interval(self):
     cell_method_strings = [
         'time: variance (interval: 1 hr)',
         'time : variance (interval: 1 hr)',
     ]
     expected = (CellMethod(method='variance',
                            coords='time',
                            intervals='1 hr'), )
     for cell_method_str in cell_method_strings:
         res = parse_cell_methods(cell_method_str)
         self.assertEqual(res, expected)
Exemple #10
0
 def test_with_interval(self):
     cell_method_strings = [
         "time: variance (interval: 1 hr)",
         "time : variance (interval: 1 hr)",
     ]
     expected = (
         CellMethod(method="variance", coords="time", intervals="1 hr"),
     )
     for cell_method_str in cell_method_strings:
         res = parse_cell_methods(cell_method_str)
         self.assertEqual(res, expected)
 def test_climatology(self):
     cell_method_strings = [
         'time: minimum within days time: mean over days',
         'time : minimum within days time: mean over days',
         'time: minimum within days time : mean over days',
         'time : minimum within days time : mean over days',
     ]
     expected = (CellMethod(method='minimum within days', coords='time'),
                 CellMethod(method='mean over days', coords='time'))
     for cell_method_str in cell_method_strings:
         res = parse_cell_methods(cell_method_str)
         self.assertEqual(res, expected)
 def test_climatology(self):
     cell_method_strings = [
         'time: minimum within days time: mean over days',
         'time : minimum within days time: mean over days',
         'time: minimum within days time : mean over days',
         'time : minimum within days time : mean over days',
         ]
     expected = (CellMethod(method='minimum within days', coords='time'),
                 CellMethod(method='mean over days', coords='time'))
     for cell_method_str in cell_method_strings:
         res = parse_cell_methods('test_var', cell_method_str)
         self.assertEqual(res, expected)
Exemple #13
0
 def test_climatology(self):
     cell_method_strings = [
         "time: minimum within days time: mean over days",
         "time : minimum within days time: mean over days",
         "time: minimum within days time : mean over days",
         "time : minimum within days time : mean over days",
     ]
     expected = (
         CellMethod(method="minimum within days", coords="time"),
         CellMethod(method="mean over days", coords="time"),
     )
     for cell_method_str in cell_method_strings:
         res = parse_cell_methods(cell_method_str)
         self.assertEqual(res, expected)
Exemple #14
0
 def test_multiple(self):
     cell_method_strings = [
         "time: maximum (interval: 1 hr) time: mean (interval: 1 day)",
         "time : maximum (interval: 1 hr) time: mean (interval: 1 day)",
         "time: maximum (interval: 1 hr) time : mean (interval: 1 day)",
         "time : maximum (interval: 1 hr) time : mean (interval: 1 day)",
     ]
     expected = (
         CellMethod(method="maximum", coords="time", intervals="1 hr"),
         CellMethod(method="mean", coords="time", intervals="1 day"),
     )
     for cell_method_str in cell_method_strings:
         res = parse_cell_methods(cell_method_str)
         self.assertEqual(res, expected)
 def test_multiple(self):
     cell_method_strings = [
         'time: maximum (interval: 1 hr) time: mean (interval: 1 day)',
         'time : maximum (interval: 1 hr) time: mean (interval: 1 day)',
         'time: maximum (interval: 1 hr) time : mean (interval: 1 day)',
         'time : maximum (interval: 1 hr) time : mean (interval: 1 day)',
         ]
     expected = (CellMethod(method='maximum', coords='time',
                            intervals='1 hr'),
                 CellMethod(method='mean', coords='time',
                            intervals='1 day'))
     for cell_method_str in cell_method_strings:
         res = parse_cell_methods('test_var', cell_method_str)
         self.assertEqual(res, expected)
Exemple #16
0
def build_cube_metadata(engine):
    """Add the standard meta data to the cube."""

    cf_var = engine.cf_var
    cube = engine.cube

    # Determine the cube's name attributes
    cube.var_name = cf_var.cf_name
    standard_name = getattr(cf_var, CF_ATTR_STD_NAME, None)
    long_name = getattr(cf_var, CF_ATTR_LONG_NAME, None)
    cube.long_name = long_name

    if standard_name is not None:
        try:
            cube.standard_name = _get_valid_standard_name(standard_name)
        except ValueError:
            if cube.long_name is not None:
                cube.attributes["invalid_standard_name"] = standard_name
            else:
                cube.long_name = standard_name

    # Determine the cube units.
    attr_units = get_attr_units(cf_var, cube.attributes)
    cube.units = attr_units

    # Incorporate cell methods
    nc_att_cell_methods = getattr(cf_var, CF_ATTR_CELL_METHODS, None)
    with warnings.catch_warnings(record=True) as warning_records:
        cube.cell_methods = parse_cell_methods(nc_att_cell_methods)
    # Filter to get the warning we are interested in.
    warning_records = [
        record for record in warning_records
        if issubclass(record.category, UnknownCellMethodWarning)
    ]
    if len(warning_records) > 0:
        # Output an enhanced warning message.
        warn_record = warning_records[0]
        name = "{}".format(cf_var.cf_name)
        msg = warn_record.message.args[0]
        msg = msg.replace("variable", "variable {!r}".format(name))
        warnings.warn(message=msg, category=UnknownCellMethodWarning)

    # Set the cube global attributes.
    for attr_name, attr_value in cf_var.cf_group.global_attributes.items():
        try:
            cube.attributes[str(attr_name)] = attr_value
        except ValueError as e:
            msg = "Skipping global attribute {!r}: {}"
            warnings.warn(msg.format(attr_name, str(e)))
 def test_climatology_with_unknown_method(self):
     cell_method_strings = [
         'time: min within days time: mean over days',
         'time : min within days time: mean over days',
         'time: min within days time : mean over days',
         'time : min within days time : mean over days',
         ]
     expected = (CellMethod(method='min within days', coords='time'),
                 CellMethod(method='mean over days', coords='time'))
     for cell_method_str in cell_method_strings:
         with mock.patch('warnings.warn') as warn:
             res = parse_cell_methods(cell_method_str)
         self.assertIn("NetCDF variable contains unknown cell method 'min'",
                       warn.call_args[0][0])
         self.assertEqual(res, expected)
 def test_climatology_with_unknown_method(self):
     cell_method_strings = [
         'time: min within days time: mean over days',
         'time : min within days time: mean over days',
         'time: min within days time : mean over days',
         'time : min within days time : mean over days',
     ]
     expected = (CellMethod(method='min within days', coords='time'),
                 CellMethod(method='mean over days', coords='time'))
     for cell_method_str in cell_method_strings:
         with mock.patch('warnings.warn') as warn:
             res = parse_cell_methods(cell_method_str)
         self.assertIn("NetCDF variable contains unknown cell method 'min'",
                       warn.call_args[0][0])
         self.assertEqual(res, expected)
 def test_multiple(self):
     cell_method_strings = [
         'time: maximum (interval: 1 hr) time: mean (interval: 1 day)',
         'time : maximum (interval: 1 hr) time: mean (interval: 1 day)',
         'time: maximum (interval: 1 hr) time : mean (interval: 1 day)',
         'time : maximum (interval: 1 hr) time : mean (interval: 1 day)',
     ]
     expected = (CellMethod(method='maximum',
                            coords='time',
                            intervals='1 hr'),
                 CellMethod(method='mean', coords='time',
                            intervals='1 day'))
     for cell_method_str in cell_method_strings:
         res = parse_cell_methods(cell_method_str)
         self.assertEqual(res, expected)
 def test_comment(self):
     cell_method_strings = [
         'time: maximum (interval: 1 hr comment: first bit) '
         'time: mean (interval: 1 day comment: second bit)',
         'time : maximum (interval: 1 hr comment: first bit) '
         'time: mean (interval: 1 day comment: second bit)',
         'time: maximum (interval: 1 hr comment: first bit) '
         'time : mean (interval: 1 day comment: second bit)',
         'time : maximum (interval: 1 hr comment: first bit) '
         'time : mean (interval: 1 day comment: second bit)',
         ]
     expected = (CellMethod(method='maximum', coords='time',
                            intervals='1 hr', comments='first bit'),
                 CellMethod(method='mean', coords='time',
                            intervals='1 day', comments='second bit'))
     for cell_method_str in cell_method_strings:
         res = parse_cell_methods('test_var', cell_method_str)
         self.assertEqual(res, expected)
Exemple #21
0
def to_iris(dataarray):
    """ Convert a DataArray into a Iris Cube
    """
    # Iris not a hard dependency
    import iris
    from iris.fileformats.netcdf import parse_cell_methods
    from xarray.core.pycompat import dask_array_type

    dim_coords = []
    aux_coords = []

    for coord_name in dataarray.coords:
        coord = encode(dataarray.coords[coord_name])
        coord_args = _get_iris_args(coord.attrs)
        coord_args['var_name'] = coord_name
        axis = None
        if coord.dims:
            axis = dataarray.get_axis_num(coord.dims)
        if coord_name in dataarray.dims:
            iris_coord = iris.coords.DimCoord(coord.values, **coord_args)
            dim_coords.append((iris_coord, axis))
        else:
            iris_coord = iris.coords.AuxCoord(coord.values, **coord_args)
            aux_coords.append((iris_coord, axis))

    args = _get_iris_args(dataarray.attrs)
    args['var_name'] = dataarray.name
    args['dim_coords_and_dims'] = dim_coords
    args['aux_coords_and_dims'] = aux_coords
    if 'cell_methods' in dataarray.attrs:
        args['cell_methods'] = \
            parse_cell_methods(dataarray.attrs['cell_methods'])

    # Create the right type of masked array (should be easier after #1769)
    if isinstance(dataarray.data, dask_array_type):
        from dask.array import ma as dask_ma
        masked_data = dask_ma.masked_invalid(dataarray)
    else:
        masked_data = np.ma.masked_invalid(dataarray)

    cube = iris.cube.Cube(masked_data, **args)

    return cube
Exemple #22
0
def to_iris(dataarray):
    """ Convert a DataArray into a Iris Cube
    """
    # Iris not a hard dependency
    import iris
    from iris.fileformats.netcdf import parse_cell_methods
    from xarray.core.pycompat import dask_array_type

    dim_coords = []
    aux_coords = []

    for coord_name in dataarray.coords:
        coord = encode(dataarray.coords[coord_name])
        coord_args = _get_iris_args(coord.attrs)
        coord_args['var_name'] = coord_name
        axis = None
        if coord.dims:
            axis = dataarray.get_axis_num(coord.dims)
        if coord_name in dataarray.dims:
            iris_coord = iris.coords.DimCoord(coord.values, **coord_args)
            dim_coords.append((iris_coord, axis))
        else:
            iris_coord = iris.coords.AuxCoord(coord.values, **coord_args)
            aux_coords.append((iris_coord, axis))

    args = _get_iris_args(dataarray.attrs)
    args['var_name'] = dataarray.name
    args['dim_coords_and_dims'] = dim_coords
    args['aux_coords_and_dims'] = aux_coords
    if 'cell_methods' in dataarray.attrs:
        args['cell_methods'] = \
            parse_cell_methods(dataarray.attrs['cell_methods'])

    # Create the right type of masked array (should be easier after #1769)
    if isinstance(dataarray.data, dask_array_type):
        from dask.array import ma as dask_ma
        masked_data = dask_ma.masked_invalid(dataarray)
    else:
        masked_data = np.ma.masked_invalid(dataarray)

    cube = iris.cube.Cube(masked_data, **args)

    return cube
Exemple #23
0
def to_iris(dataarray):
    """ Convert a DataArray into a Iris Cube
    """
    # Iris not a hard dependency
    import iris
    from iris.fileformats.netcdf import parse_cell_methods

    dim_coords = []
    aux_coords = []

    for coord_name in dataarray.coords:
        coord = encode(dataarray.coords[coord_name])
        coord_args = _get_iris_args(coord.attrs)
        coord_args["var_name"] = coord_name
        axis = None
        if coord.dims:
            axis = dataarray.get_axis_num(coord.dims)
        if coord_name in dataarray.dims:
            try:
                iris_coord = iris.coords.DimCoord(coord.values, **coord_args)
                dim_coords.append((iris_coord, axis))
            except ValueError:
                iris_coord = iris.coords.AuxCoord(coord.values, **coord_args)
                aux_coords.append((iris_coord, axis))
        else:
            iris_coord = iris.coords.AuxCoord(coord.values, **coord_args)
            aux_coords.append((iris_coord, axis))

    args = _get_iris_args(dataarray.attrs)
    args["var_name"] = dataarray.name
    args["dim_coords_and_dims"] = dim_coords
    args["aux_coords_and_dims"] = aux_coords
    if "cell_methods" in dataarray.attrs:
        args["cell_methods"] = parse_cell_methods(
            dataarray.attrs["cell_methods"])

    masked_data = duck_array_ops.masked_invalid(dataarray.data)
    cube = iris.cube.Cube(masked_data, **args)

    return cube
Exemple #24
0
def to_iris(dataarray):
    """ Convert a DataArray into a Iris Cube
    """
    # Iris not a hard dependency
    import iris
    from iris.fileformats.netcdf import parse_cell_methods

    dim_coords = []
    aux_coords = []

    for coord_name in dataarray.coords:
        coord = encode(dataarray.coords[coord_name])
        coord_args = _get_iris_args(coord.attrs)
        coord_args['var_name'] = coord_name
        axis = None
        if coord.dims:
            axis = dataarray.get_axis_num(coord.dims)
        if coord_name in dataarray.dims:
            try:
                iris_coord = iris.coords.DimCoord(coord.values, **coord_args)
                dim_coords.append((iris_coord, axis))
            except ValueError:
                iris_coord = iris.coords.AuxCoord(coord.values, **coord_args)
                aux_coords.append((iris_coord, axis))
        else:
            iris_coord = iris.coords.AuxCoord(coord.values, **coord_args)
            aux_coords.append((iris_coord, axis))

    args = _get_iris_args(dataarray.attrs)
    args['var_name'] = dataarray.name
    args['dim_coords_and_dims'] = dim_coords
    args['aux_coords_and_dims'] = aux_coords
    if 'cell_methods' in dataarray.attrs:
        args['cell_methods'] = \
            parse_cell_methods(dataarray.attrs['cell_methods'])

    masked_data = duck_array_ops.masked_invalid(dataarray.data)
    cube = iris.cube.Cube(masked_data, **args)

    return cube
 def test_comment(self):
     cell_method_strings = [
         'time: maximum (interval: 1 hr comment: first bit) '
         'time: mean (interval: 1 day comment: second bit)',
         'time : maximum (interval: 1 hr comment: first bit) '
         'time: mean (interval: 1 day comment: second bit)',
         'time: maximum (interval: 1 hr comment: first bit) '
         'time : mean (interval: 1 day comment: second bit)',
         'time : maximum (interval: 1 hr comment: first bit) '
         'time : mean (interval: 1 day comment: second bit)',
     ]
     expected = (CellMethod(method='maximum',
                            coords='time',
                            intervals='1 hr',
                            comments='first bit'),
                 CellMethod(method='mean',
                            coords='time',
                            intervals='1 day',
                            comments='second bit'))
     for cell_method_str in cell_method_strings:
         res = parse_cell_methods(cell_method_str)
         self.assertEqual(res, expected)