Exemple #1
0
''' reads a preprocessed catalog and computes tzav for it.

Writes a file with the numpy array

Written by: P. Gallardo.
'''
import numpy as np  # noqa
from iskay import catalogTools # noqa
from iskay import pairwiser # noqa

#look in parent directory
df = catalogTools.preProcessedCat(directory='../ApPhotoResults').df

sigma_z = 0.01
dT = df.dT.values
z = df.z.values
tzav = pairwiser.get_tzav(dT, z, sigma_z)

np.savez('tzav_allCat', tzav)
Exemple #2
0
from iskay import catalogTools
import matplotlib.pyplot as plt
from iskay import pairwiser
import numpy as np
import scipy.stats

fnames = [
    "params_disjoint_bin_lum_gt_04p3_and_06p1_jk.ini",
    "params_disjoint_bin_lum_gt_06p1_and_07p9_jk.ini",
    "params_lum_gt_07p9_jk.ini"
]

for j in range(len(fnames)):
    fname = fnames[j]
    p = paramTools.params(fname)
    df = catalogTools.preProcessedCat(howMany=None, query=p.CAT_QUERY).df

    dT = df.dT.values
    z = df.z.values
    tzav = pairwiser.get_tzav_fast(dT, z, p.SIGMA_Z)
    dT_ksz = dT - tzav

    mean, std = np.mean(dT_ksz), np.std(dT_ksz)

    plt.figure(figsize=[8, 4.5])
    plt.hist(dT_ksz,
             normed=True,
             histtype='step',
             color='black',
             lw=2,
             bins=200)
Exemple #3
0
def test_preProcessedCat_howMany():
    howMany = 14
    directory = os.path.join(testPath, 'data_toTestAPI', 'ApPhotoResults')
    pattern = 'testPreprocessedCat_*.csv'
    df = catalogTools.preProcessedCat(pattern, directory, howMany=howMany).df
    assert howMany == len(df.ra.values)
Exemple #4
0
def test_preProcessedCat_sortBy():
    sortby = 'ra'
    directory = os.path.join(testPath, 'data_toTestAPI', 'ApPhotoResults')
    pattern = 'testPreprocessedCat_*.csv'
    df = catalogTools.preProcessedCat(pattern, directory, sortBy=sortby).df
    assert (df.ra.values.max() == df.ra.values[0])
Exemple #5
0
def test_preProcessedCat_query():
    query = 'ra>20.0'
    directory = os.path.join(testPath, 'data_toTestAPI', 'ApPhotoResults')
    pattern = 'testPreprocessedCat_*.csv'
    df = catalogTools.preProcessedCat(pattern, directory, query=query).df
    assert np.all(df.ra.values > 20)
Exemple #6
0
def test_preProcessedCat():
    directory = os.path.join(testPath, 'data_toTestAPI', 'ApPhotoResults')
    pattern = 'testPreprocessedCat_*.csv'
    cat = catalogTools.preProcessedCat(pattern, directory)
    assert len(cat.df) > 1