def get_35_tune(pathlist, sizes, expr_num): #get experiment info first8, second8, third8 = pathlist start_size, iter_size = sizes explore_cond_list = ['diverse', 'random'] #yes I'm using mod2 to index, sue me. explore_type = explore_cond_list[expr_num % 2] exp_cond = 'Exp_' + str(expr_num) + ' Start:' + str( start_size / 100) + ', Iter:' + str( iter_size / 100) + ', Explore:' + explore_type save_path = os.path.join(data_dir, first8) pickle_off = open(save_path, 'rb') first8 = pickle.load(pickle_off) pickle_off.close() save_path = os.path.join(data_dir, second8) pickle_off = open(save_path, 'rb') second8 = pickle.load(pickle_off) pickle_off.close() save_path = os.path.join(data_dir, third8) pickle_off = open(save_path, 'rb') third8 = pickle.load(pickle_off) pickle_off.close() #combine the 3 dfs with GCNN RF,SVM,LGBM data expr_1 = first8 expr_2 = second8 expr_3 = third8 tune_list = [] for exper in [expr_1, expr_2, expr_3]: exper = find_active_percents(exper, exp) random_checkpoint = get_checkpoint35(exper, start_size, iter_size) class_selection_list = [] expr_num_list = [] for _, row in random_checkpoint.iterrows(): class_selection_list.append(exp_cond) expr_num_list.append('Exp_' + str(expr_num)) random_checkpoint['Exp_Cond'] = class_selection_list random_checkpoint['Exp_num'] = expr_num_list tune_list.append(random_checkpoint) merged_tune = pd.concat(tune_list) return merged_tune
pickle_off = open(save_path, 'rb') second8 = pickle.load(pickle_off) pickle_off.close() save_path = os.path.join(data_dir, third8) pickle_off = open(save_path, 'rb') third8 = pickle.load(pickle_off) pickle_off.close() #combine the 3 dfs with GCNN RF,SVM,LGBM data expr_1 = first8 expr_2 = second8 expr_3 = third8 from iter_plot_help_funcs import find_active_percents, plot_metrics, plot_prec_rec_curve, plot_prec_rec_vs_tresh for exper in [expr_1, expr_2, expr_3]: exper = find_active_percents(exper, exp) # plot_metrics(exper,exp) # plot_prec_rec_curve(exper,exp) # plot_prec_rec_vs_tresh(exper,exp) # break #get gCNN rows: from iter_plot_help_funcs import find_active_percents, plot_metrics, plot_prec_rec_curve, plot_prec_rec_vs_tresh, plot_avg_percent_found, set_sns_pal plot_avg_percent_found(pd.concat([expr_1, expr_2, expr_3]), 'Mean Active Recovery for Exp_4', 15, 10) for exper in [expr_1, expr_2, expr_3]: exper_gcnn = exper[exper['Classifier'] == 'GCNN_pytorch'] df_list = [] for _, row in exper_gcnn.iterrows(): hist = row['hist'] row_df = pd.DataFrame(hist) test = pd.melt(row_df.reset_index(),