def materialList():
    shape_name = "ThreeBox"
    num_rows = 1
    num_cols = len(colorMapFiles())

    w = 24
    h = w * num_rows / num_cols

    L = normalizeVector(np.array([-0.4, 0.5, 0.6]))

    fig, axes = plt.subplots(figsize=(w, h))
    font_size = 15
    fig.subplots_adjust(left=0.02, right=0.98, top=0.96, bottom=0.04, hspace=0.1, wspace=0.05)
    fig.suptitle("", fontsize=font_size)

    plot_grid = SubplotGrid(num_rows, num_cols)

    Ng_data = shapeFile(shape_name)
    Ng_data = loadNormal(Ng_data)
    Ng_32F, A_8U = Ng_data

    for colormap_file in colorMapFilesSortedReflectanceError():
        M_32F = loadColorMap(colormap_file)


        C0_32F = ColorMapShader(M_32F).diffuseShading(L, Ng_32F)

        plot_grid.showImage(setAlpha(C0_32F, to32F(A_8U)), "")

    file_path = shapeResultFile("ShapeEstimation", "MaterialList")
    fig.savefig(file_path, transparent=True)
def shapeList():

    num_rows = 1
    num_cols = len(shapeNames())

    w = 20
    h = w * num_rows / num_cols

    cmap_id = 10
    colormap_file = colorMapFile(cmap_id)
    M_32F = loadColorMap(colormap_file)

    L = normalizeVector(np.array([-0.4, 0.5, 0.6]))

    fig, axes = plt.subplots(figsize=(w, h))
    font_size = 15
    fig.subplots_adjust(left=0.02, right=0.98, top=0.96, bottom=0.04, hspace=0.15, wspace=0.1)
    fig.suptitle("", fontsize=font_size)

    plot_grid = SubplotGrid(num_rows, num_cols)

    for shape_name in shapeNames():
        Ng_data = shapeFile(shape_name)
        Ng_data = loadNormal(Ng_data)
        Ng_32F, A_8U = Ng_data

        C0_32F = ColorMapShader(M_32F).diffuseShading(L, Ng_32F)

        plot_grid.showImage(setAlpha(C0_32F, to32F(A_8U)), "")

    file_path = shapeResultFile("ShapeEstimation", "ShapeList")
    fig.savefig(file_path, transparent=True)
Exemple #3
0
    def _runLayer(self, layer_file):
        C0_8U = loadRGBA(layer_file)

        if C0_8U is None:
            return

        A_8U = alpha(C0_8U)

        if A_8U is None:
            return

        C0_32F = to32F(rgb(C0_8U))

        L = normalizeVector(np.array([-0.2, 0.3, 0.7]))
        sfs_method = Wu08SFS(L, C0_32F, A_8U)
        sfs_method.run()
        N_32F = sfs_method.normal()

        fig, axes = plt.subplots(figsize=(11, 5))
        font_size = 15
        fig.subplots_adjust(left=0.05, right=0.95, top=0.9, hspace=0.12, wspace=0.05)
        fig.suptitle(self.name(), fontsize=font_size)

        num_rows = 1
        num_cols = 2
        plot_grid = SubplotGrid(num_rows, num_cols)

        plot_grid.showImage(C0_8U, r"Shading: $C$")
        plot_grid.showImage(normalToColor(N_32F, A_8U), r"Estimated Normal: $N$")

        showMaximize()
Exemple #4
0
    def _runImp(self):
        normal_data = loadNormal(self._data_file)

        if normal_data is None:
            return

        N0_32F, A_8U = normal_data

        # N0_32F = cv2.resize(N0_32F, (64, 64))
        # A_8U = cv2.resize(A_8U, N0_32F.shape[:2])

        A_32F = to32F(A_8U)

        L = normalizeVector(np.array([-0.2, 0.3, 0.7]))

        # C0_32F = ToonShader().diffuseShading(L, N0_32F)
        C0_32F = LambertShader().diffuseShading(L, N0_32F)

        sfs_method = Wu08SFS(L, C0_32F, A_8U)
        sfs_method.run()
        N_32F = sfs_method.normal()

        saveNormal(self.resultFile(self._data_file_name, result_name="Wu08"), N_32F, A_8U)

        C_error = sfs_method.shadingError()
        I_32F = sfs_method.brightness()
        I_32F = gray2rgb(I_32F)
        C_32F = sfs_method.shading()

        N0_32F = trim(N0_32F, A_8U)
        C0_32F = trim(C0_32F, A_8U)
        C_32F = trim(C_32F, A_8U)
        N_32F = trim(N_32F, A_8U)
        C_error = trim(C_error, A_8U)
        I_32F = trim(I_32F, A_8U)
        A_32F = trim(A_32F, A_8U)
        A_8U = trim(A_8U, A_8U)

        h, w = N_32F.shape[:2]
        N_error = angleErros(N_32F.reshape(-1, 3), N0_32F.reshape(-1, 3)).reshape(h, w)
        N_error[A_8U < np.max(A_8U)] = 0.0

        fig, axes = plt.subplots(figsize=(11, 5))
        font_size = 15
        fig.subplots_adjust(left=0.05, right=0.95, top=0.9, hspace=0.12, wspace=0.05)
        fig.suptitle(self.name(), fontsize=font_size)

        num_rows = 2
        num_cols = 3
        plot_grid = SubplotGrid(num_rows, num_cols)

        plot_grid.showImage(normalToColor(N0_32F, A_8U), r"Ground Truth Normal: $N_g$")
        plot_grid.showImage(normalToColor(N_32F, A_8U), r"Estimated Normal: $N$")
        plot_grid.showColorMap(N_error, r"Angle Error: $N_g, N$", v_min=0, v_max=30.0)

        plot_grid.showImage(setAlpha(C0_32F, A_32F), r"Shading: $C$")
        plot_grid.showImage(setAlpha(C_32F, A_32F), r"Estimated Shading: $C$")
        plot_grid.showColorMap(C_error, r"Shading Error: $C_g, C$", v_min=0, v_max=0.1)

        showMaximize()
    def _compute(self):
        image = self._image

        img_32F = to32F(self._image)
        self._A_32F = alpha(img_32F)

        sigma_xy = 100.0
        xy = positionFeatures(img_32F) / sigma_xy
        Lab = LabFeatures(img_32F)

        sigma_L = 1.0
        Lab[:, 0] /= sigma_L

        foreground = foreGroundFeatures(img_32F)

        Labxy = np.concatenate((Lab, xy), axis=1)

        Labxy_samples = shuffle(Labxy[foreground, :], random_state=0)[:1000]

        kmeans = sklearn.cluster.KMeans(n_clusters=self._num_colors, random_state=0).fit(Labxy_samples)

        self._centers = kmeans.cluster_centers_
        self._centers[:, 0] *= sigma_L

        labels = kmeans.predict(Labxy)
        self._labels = labels.reshape(image.shape[:2])
Exemple #6
0
 def _runImp(self):
     image = self._scene.image()
     I_32F = to32F(rgb2gray(rgb(image)))
     N_32F, D_32F = estimateNormal(I_32F)
     self._scene.setNormal(N_32F)
     self._scene.setDepth(D_32F)
     self._scene.setDisplayMode(Scene.DisplayNormal)
    def _strokeEdited(self, stroke_sets):

        image = self._scene.image()

        C_32F = to32F(rgb(image))

        for stroke_set in stroke_sets.strokeSets():
            for stroke in stroke_set.strokes():
                if stroke.empty():
                    continue

                mask = np.zeros(image.shape[:2], dtype=np.uint8)
                points = stroke.points()
                points = np.int32(points)

                brush_size = int(stroke.brushSize())
                cv2.polylines(mask, [points], 0, 255, brush_size)

                Cs = C_32F[mask > 0, :]
                Is = np.arange(len(Cs), dtype=np.float32)

                Is = np.array(Is)
                Cs = np.array(Cs)
                M = ColorMapEstimation(Cs, Is, num_samples=1000)

                M_img = M.mapImage(image_size=(256, 32))

                def plotFunc():
                    plt.imshow(M_img)

                self._matplot_view.drawPlots(plotFunc)

                saveImage(self._currentColorMapFile(), M_img)
                self._newColorMapID()
    def __init__(self, I, radius=5, epsilon=0.4):
        radius = int(radius)
        I_32F = to32F(I)

        if _isGray(I):
            self._guided_filter = GuidedFilterGray(I_32F, radius, epsilon)
        else:
            self._guided_filter = GuidedFilterColor(I_32F, radius, epsilon)
def baseDetailSeparationMedian(I_32F, ksize=5):
    ksize = 2 * (ksize / 2) + 1

    B = to32F(cv2.medianBlur(to8U(I_32F), ksize))

    D = I_32F - B

    return B, D
    def _runLayer(self, layer_file):
        C0_8U = loadRGBA(layer_file)

        if C0_8U is None:
            return

        A_8U = alpha(C0_8U)

#         if A_8U is None:
#             return

        C0_32F = to32F(rgb(C0_8U))
        I_32F = luminance(C0_32F)

        Lab_32F = rgb2Lab(C0_32F)

        th_specular = 0.2
        th_contour = 0.02
        th_material = 0.1
        E_32F = DoG(I_32F, sigma=2.0)

        contour = th_contour * np.min(E_32F) - E_32F
        contour *= 1.0 / np.max(contour)
        contour = np.clip(contour, 0.0, 1.0)
        specular = E_32F - th_specular * np.max(E_32F)
        specular *= 1.0 / np.max(specular)
        specular = np.clip(specular, 0.0, 1.0)

        material = rgb(C0_8U)
#         edge_mask = np.zeros(I_32F.shape, dtype=np.uint8)
#         edge_mask[contour > 0.0] = 1.0
#         material = cv2.inpaint(material, edge_mask, 3, cv2.INPAINT_TELEA)

        for i in xrange(1):
            material = cv2.medianBlur(material, ksize=7)
#         material = th_material * np.max(np.abs(E_32F)) - np.abs(E_32F)
#         material *= 1.0 / np.max(material)
#         material = np.clip(material, 0.0, 1.0)
#         material[material > 0.0] = 1.0
        E_32F[E_32F < 0.0] = 0.0

        fig, axes = plt.subplots(figsize=(11, 5))
        font_size = 15
        fig.subplots_adjust(left=0.05, right=0.95, top=0.9, hspace=0.12, wspace=0.05)
        fig.suptitle(self.name(), fontsize=font_size)

        num_rows = 1
        num_cols = 4
        plot_grid = SubplotGrid(num_rows, num_cols)

        plot_grid.showImage(C0_8U, r'$C$')
        #plot_grid.showImage(setAlpha(C0_32F, material), r'$Material$')
        plot_grid.showImage(setAlpha(material, A_8U), r'$Material$')
        plot_grid.showImage(setAlpha(C0_32F, contour), r'$Contour$')
        plot_grid.showImage(setAlpha(C0_32F, specular), r'$Specular$')

        showMaximize()
Exemple #11
0
def slicSegmentation(image, num_segments=600, sigma=5):
    C_8U = rgb(image)
    C_32F = to32F(C_8U)
    segments = slic(C_32F, n_segments=num_segments, sigma=sigma)

    fig = plt.figure("Superpixels -- %d segments" % (num_segments))
    ax = fig.add_subplot(1, 1, 1)
    ax.imshow(mark_boundaries(C_32F, segments))
    plt.axis("off")
    plt.show()
    def filter(self, p):
        p_32F = to32F(p)
        if _isGray(p_32F):
            return self._filterGray(p_32F)

        cs = p.shape[2]
        q = np.array(p_32F)

        for ci in range(cs):
            q[:, :, ci] = self._filterGray(p_32F[:, :, ci])
        return q
def HSVFeatures(image, w_H=1.0, w_S=1.0, w_V=1.0):
    img_32F = to32F(image)
    rgb_32F = img_32F[:, :, :3]
    hsv_32F = rgb2hsv(rgb_32F)

    h, w, cs = image.shape
    features = hsv_32F.reshape(h * w, -1)

    features[:, 0] *= w_H
    features[:, 1] *= w_S
    features[:, 2] *= w_V

    return features
def LabFeatures(image, w_L=1.0, w_a=1.0, w_b=1.0):
    img_32F = to32F(image)
    rgb_32F = img_32F[:, :, :3]
    Lab_32F = rgb2Lab(rgb_32F)

    h, w, cs = image.shape
    features = Lab_32F.reshape(h * w, -1)

    features[:, 0] *= w_L
    features[:, 1] *= w_a
    features[:, 2] *= w_b

    return features
def colorToNormal(C_8U, fill_background=False):
    rgb_8U = rgb(C_8U)
    A_8U = alpha(C_8U)

    C_32F = to32F(rgb_8U)

    N_32F = 2.0 * C_32F - 1.0

    if fill_background:
        N_32F[A_8U < 10, :] = np.array([0.0, 0.0, 0.0])

    N_32F_normalized = normalizeImage(N_32F)

    return N_32F_normalized
    def __init__(self, I, radius=5, epsilon=0.4, scale=4):
        I_32F = to32F(I)
        self._I = I_32F
        h, w = I.shape[:2]

        I_sub = _downSample(I_32F, scale)

        self._I_sub = I_sub
        radius = int(radius / scale)

        if _isGray(I):
            self._guided_filter = GuidedFilterGray(I_sub, radius, epsilon)
        else:
            self._guided_filter = GuidedFilterColor(I_sub, radius, epsilon)
    def filter(self, p):
        p_32F = to32F(p)
        shape_original = p.shape[:2]

        p_sub = _downSample(p_32F, shape=self._I_sub.shape[:2])

        if _isGray(p_sub):
            return self._filterGray(p_sub, shape_original)

        cs = p.shape[2]
        q = np.array(p_32F)

        for ci in range(cs):
            q[:, :, ci] = self._filterGray(p_sub[:, :, ci], shape_original)
        return q
    def _runImp(self):
        normal_data = loadNormal(self._data_file)

        if normal_data is None:
            return

        N0_32F, A_8U = normal_data

        A_32F = to32F(A_8U)

        L = normalizeVector(np.array([-0.2, 0.3, 0.7]))

        # C0_32F = ToonShader().diffuseShading(L, N0_32F)
        C0_32F = LambertShader().diffuseShading(L, N0_32F)
        self._C0_32F = C0_32F

        self._loadImage()
    def _runLayer(self, layer_file):
        if layer_file is None:
            return
        C0_8U = loadRGBA(layer_file)

        if C0_8U is None:
            C0_8U = loadRGB(layer_file)

        if C0_8U is None:
            return

        h, w = C0_8U.shape[:2]
        w_low = 1024
        h_low = w_low * h / w

        #  C0_8U = cv2.resize(C0_8U, (w_low, h_low))

        A_8U = alpha(C0_8U)
        self._A_8U = A_8U

        C0_32F = to32F(rgb(C0_8U))

        if A_8U is not None:
            C0_32F[A_8U < 0.9 * np.max(A_8U), :] = np.array([0, 0, 0])

        self._C0_32F = C0_32F

        self._loadImage()
        self._computeBaseDetalSeparation()
        self._computeInitialDetailNormal()
        self.computeDetailNormal()
        self._computeLumoNormal()
        self.computeInitialNormal()

        # plt.savefig(self.characterResultFile("BumpNormal.png"))

        if self._N_b_smooth is not None:
            self.cleanCharacterResultDir()
            saveNormal(self.characterResultFile("N_b.png"), self._N_b, A_8U)
            saveNormal(self.characterResultFile("N_b_smooth.png"), self._N_b_smooth, A_8U)
            saveNormal(self.characterResultFile("N_d.png"), self._N_d, A_8U)
            saveNormal(self.characterResultFile("N_d_smooth.png"), self._N_d_smooth, A_8U)
            saveNormal(self.characterResultFile("N_lumo.png"), self._N_lumo, A_8U)
            saveNormal(self.characterResultFile("N0_b.png"), self._N0_b_32F, A_8U)
            saveNormal(self.characterResultFile("N0_d.png"), self._N0_d_32F, A_8U)
    def _runImp(self):
        normal_data = loadNormal(self._data_file)

        if normal_data is None:
            return

        N0_32F, A_8U = normal_data
        A_32F = to32F(A_8U)

        L = normalizeVector(np.array([-0.2, 0.3, 0.7]))

        C0_32F = LambertShader().diffuseShading(L, N0_32F)

        self._normal_constraint.clear()

        if os.path.exists(self.constraintFile()):
            self._normal_constraint.load(self.constraintFile())
        self._tool.setImage(setAlpha(C0_32F, A_32F))
    def _runLayer(self, layer_file):
        C0_8U = loadRGBA(layer_file)

        if C0_8U is None:
            return

        A_8U = alpha(C0_8U)

        if A_8U is None:
            return

        C0_32F = to32F(rgb(C0_8U))
        I_32F = luminance(C0_32F)

        N0_32F, A_8U = loadNormal(self.characterResultFile("N0_d.png", data_name="BaseDetailSepration"))
        Nd_32F, A_8U = loadNormal(self.characterResultFile("N_d_smooth.png", data_name="BaseDetailSepration"))
        Nb_32F, A_8U = loadNormal(self.characterResultFile("N_b_smooth.png", data_name="BaseDetailSepration"))

        W_32F = np.array(Nb_32F[:, :, 2])
        W_32F = W_32F
        W_32F[W_32F < 0.95] = 0.0

        L = lightEstimation(I_32F, N0_32F, A_8U)
        # L = lightEstimationByVoting(I_32F, N0_32F, A_8U)

        L_txt = 0.01 * np.int32(100 * L)

        L_img = lightSphere(L)

        fig, axes = plt.subplots(figsize=(11, 5))
        font_size = 15
        fig.subplots_adjust(left=0.05, right=0.95, top=0.9, hspace=0.12, wspace=0.05)
        fig.suptitle(self.name(), fontsize=font_size)

        num_rows = 1
        num_cols = 4
        plot_grid = SubplotGrid(num_rows, num_cols)

        plot_grid.showImage(C0_8U, r'$C$')
        plot_grid.showImage(normalToColor(N0_32F, A_8U), r'$N$')
        plot_grid.showImage(setAlpha(C0_32F, W_32F), r'$Nd_z$')
        plot_grid.showImage(L_img, r'$L: [%s, %s, %s]$' %(L_txt[0], L_txt[1], L_txt[2]))

        showMaximize()
    def _runImp(self):
        normal_data = loadNormal(self._data_file)

        if normal_data is None:
            return

        N_32F, A_8U = normal_data

        N_32F = trim(N_32F, A_8U)
        A_8U = trim(A_8U, A_8U)
        A_32F = to32F(A_8U)

        L = normalizeVector(np.array([-0.2, 0.3, 0.7]))

        I_half = half_lambert.diffuse(N_32F, L)
        I_half = setAlpha(gray2rgb(I_half), A_32F)

        I_lambert = lambert.diffuse(N_32F, L)
        I_lambert = setAlpha(gray2rgb(I_lambert), A_32F)

        fig, axes = plt.subplots(figsize=(11, 5))

        font_size = 15

        fig.subplots_adjust(left=0.05, right=0.95, top=0.9, hspace=0.05, wspace=0.05)
        fig.suptitle("Depth From Normal", fontsize=font_size)

        plt.subplot(1, 4, 1)
        plt.title(r'Normal: $N$')
        plt.imshow(normalToColor(N_32F, A_8U))
        plt.axis('off')

        plt.subplot(1, 4, 2)
        plt.title(r'Half Lambert: $I_h$')
        plt.imshow(I_half)
        plt.axis('off')

        plt.subplot(1, 4, 3)
        plt.title(r'Lambert: $I_l$')
        plt.imshow(I_lambert)
        plt.axis('off')

        showMaximize()
    def _compute(self):
        C0_8U = self._image
        C0_32F = to32F(rgb(C0_8U))
        Lab_32F = rgb2Lab(C0_32F)
        I_32F = luminance(C0_32F)

        h, w = I_32F.shape[:2]
        edge_mask = np.zeros((h, w), dtype=np.uint8)

        # E_32F = DoG(Lab_32F, sigma=7.0)

        #         E_32F[E_32F > 0.0] = 0.0
        #         E_32F = - E_32F
        #         E_32F /= np.max(E_32F)
        #         th_contour = 0.05
        #         for ci in xrange(3):
        #             edge_area = E_32F[:, :, ci] > th_contour
        #             edge_mask[edge_area] = 255

        E_32F = DoG(I_32F, sigma=3.0)
        h, w = E_32F.shape[:2]
        E_norm = -np.array(E_32F)
        E_norm[E_norm < 0.0] = 0.0

        th_contour = 0.1
        edge_area = E_norm > th_contour * np.max(E_norm)
        edge_mask[edge_area] = 255
        self._edge_mask = edge_mask

        labels = np.array(edge_mask)

        mask = np.ones((h + 2, w + 2), dtype=np.uint8)
        mask[1:-1, 1:-1] = self._edge_mask

        for label in xrange(1, 3):
            regionSeeds = np.where(self._edge_mask == 0)
            if len(regionSeeds[0]) == 0:
                break
            p = (regionSeeds[1][0], regionSeeds[0][0])
            cv2.floodFill(labels, mask, p, label)
            self._edge_mask[labels == label] = label
        self._labels = labels
    def _interpolateNormalImage(self, N0_32F, W_32F, A_8U):
        constraints = []
        constraints.append(image_constraints.laplacianConstraints(w_c=0.1))
        constraints.append(image_constraints.normalConstraints(W_32F, N0_32F, w_c=3.0))
        L = normalizeVector(np.array([-0.2, 0.3, 0.7]))
        I_32F = luminance(to32F(rgb(self._image)))
        I_min, I_max = np.min(I_32F), np.max(I_32F)

        I_32F = (I_32F - I_min) / (I_max - I_min)

        # constraints.append(image_constraints.brightnessConstraints(L, I_32F, w_c=0.5))
        constraints.append(image_constraints.silhouetteConstraints(A_8U, w_c=0.8))

        solver_iter = image_solver.solveIterator(constraints,
                                                 [postNormalize(th=0.0)])

        N_32F = np.array(N0_32F)
        N_32F = image_solver.solveMG(N_32F, solver_iter, iterations=10)
        N_32F = image_constraints.NxyToNz(N_32F)

        return N_32F
def stylizedShadingFigure():
    target_shapes = ["Man", "Ogre", "Grog", "Vase"]
    target_shapes = [shapeFile(shape_name) for shape_name in target_shapes]

    target_colormaps = [1, 5, 10, 3]
    target_colormaps = [colorMapFile(cmap_id) for cmap_id in target_colormaps]

    fig, axes = plt.subplots(figsize=(12, 4))
    font_size = 15
    fig.subplots_adjust(left=0.02, right=0.98, top=0.98, bottom=0.02, hspace=0.1, wspace=0.1)
    fig.suptitle("", fontsize=font_size)

    num_rows = 1
    num_cols = 4
    plot_grid = SubplotGrid(num_rows, num_cols)

    Ls = []
    Ls.append(normalizeVector(np.array([-0.5, 0.3, 0.7])))
    Ls.append(normalizeVector(np.array([0.2, -0.35, 0.4])))
    Ls.append(normalizeVector(np.array([-0.2, 0.6, 0.3])))
    Ls.append(normalizeVector(np.array([-0.2, 0.6, 0.3])))


    for shape_file, colormap_file, L in zip(target_shapes, target_colormaps, Ls):
        N_32F, A_8U = loadNormal(shape_file)
        M_32F = loadColorMap(colormap_file)
        C_32F = ColorMapShader(M_32F).diffuseShading(L, N_32F)
#         C_32F = trim(C_32F, A_8U)
#         A_8U = trim(A_8U, A_8U)
        C_32F = setAlpha(C_32F, to32F(A_8U))

#         h, w = C_32F.shape[:2]
#
#         h_t = 512
#         w_t = w * h_t / h
#         C_32F = cv2.resize(C_32F, (w_t, h_t))
        plot_grid.showImage(C_32F, "", alpha_clip=True)

    file_path = os.path.join(shapeResultsDir(), "StylizedShading.png")
    fig.savefig(file_path, transparent=True)
    def _runImp(self):
        normal_data = loadNormal(self._data_file)

        if normal_data is None:
            return

        N0_32F, A_8U = normal_data
        A_32F = to32F(A_8U)

        L = normalizeVector(np.array([-0.2, 0.4, 0.7]))

        C0_32F = LambertShader().diffuseShading(L, N0_32F)
        I_32F = luminance(C0_32F)

        br_field = BrightnessField(I_32F, sigma=5.0)
        I_smooth_32F = br_field.smoothBrightness()
        dI = br_field.brightnessDifference()
        gx, gy = br_field.gradients()

        N_32F = br_field.field()

        fig, axes = plt.subplots(figsize=(11, 5))
        font_size = 15
        fig.subplots_adjust(left=0.05, right=0.95, top=0.9, hspace=0.12, wspace=0.05)
        fig.suptitle(self.name(), fontsize=font_size)

        num_rows = 2
        num_cols = 4
        plot_grid = SubplotGrid(num_rows, num_cols)
        plot_grid.showImage(I_32F, r'$I$')
        plot_grid.showColorMap(dI, r'$dI$')
        plot_grid.showColorMap(gx, r'$gx$')
        plot_grid.showColorMap(gy, r'$gy$')

        plot_grid.showImage(normalToColor(N_32F, A_8U), r'$N$')
        plot_grid.showImage(N_32F[:, :, 2], r'$N_z$')

        showMaximize()
    def _runImp(self):
        normal_data = loadNormal(self._data_file)

        if normal_data is None:
            return

        N0_32F, A_8U = normal_data
        A_32F = to32F(A_8U)

        L = normalizeVector(np.array([-0.2, 0.3, 0.7]))

        #C0_32F = ToonShader().diffuseShading(L, N0_32F)
        C0_32F = LambertShader().diffuseShading(L, N0_32F)
        I0_32F = luminance(C0_32F)

        I0_low_32F = cv2.resize(I0_32F, (256, 256))
        A_low_8U = cv2.resize(A_8U, I0_low_32F.shape)

        D_32F = depthFromGradient(I0_low_32F, A_low_8U)
        D_32F = cv2.resize(D_32F, I0_32F.shape)
        N_32F = depthToNormal(D_32F)

        self._view.setRGBAD(setAlpha(C0_32F, A_32F), D_32F)
    def _runImp(self):
        normal_data = loadNormal(self._data_file)

        if normal_data is None:
            return

        N0_32F, A_8U = normal_data

        #N0_32F = cv2.resize(N0_32F, (64, 64))
        #A_8U = cv2.resize(A_8U, N0_32F.shape[:2])

        A_32F = to32F(A_8U)

        L = normalizeVector(np.array([-0.2, 0.3, 0.7]))

        C0_32F = ToonShader().diffuseShading(L, N0_32F)
        # C0_32F = LambertShader().diffuseShading(L, N0_32F)

        sfs_method = Wu08SFS(L, C0_32F, A_8U)
        sfs_method.run()
        N_32F = sfs_method.normal()

        saveNormal(self.resultFile(self._data_file_name, result_name="Wu08"), N_32F, A_8U)
    def _runCharacterImp(self):
        print self.fullLayerFile()
        C0_8U = loadRGBA(self.fullLayerFile())

        if C0_8U is None:
            return

        C0_32F = to32F(C0_8U)

        print C0_32F

        h, w = C0_32F.shape[:2]

        w_low = 512
        h_low = w_low * h / w

        C0_32F = cv2.resize(C0_32F, (w_low, h_low))

        self._normal_constraint.clear()

        if os.path.exists(self.characterConstraintFile()):
            self._normal_constraint.load(self.characterConstraintFile())
        self._tool.setImage(C0_32F)
def slicSampling(image, num_segments=4000, sigma=5):
    h, w = image.shape[:2]
    C_32F = to32F(rgb(image))
    segments = slic(C_32F, n_segments=num_segments, sigma=sigma)
    print segments.shape
    print np.max(segments)
    num_centers = np.max(segments) + 1
    hist_centers = np.zeros((num_centers), dtype=np.float32)
    centers = np.zeros((num_centers, 3), dtype=np.float32)

    hist_centers[segments[:, :]] += 1.0
    centers[segments[:, :], :] += C_32F[:, :, :3]

    hist_positive = hist_centers > 0.0

    print np.count_nonzero(hist_positive)

    for ci in xrange(3):
        centers[hist_positive, ci] /= hist_centers[hist_positive]

    map_rgb = to8U(centers[segments[:, :], :].reshape(h, w, -1))
    # map_rgb = to8U(mark_boundaries(C_32F, segments))
    map_image = setAlpha(map_rgb, alpha(image))
    return map_image
def relightingFigure(shape_name="Vase", cmap_id=3):
    num_methods = 3
    num_lights = 2
    num_rows = num_lights + 1
    num_cols = num_methods + 2

    w = 15
    h = w * num_rows / num_cols

    fig, axes = plt.subplots(figsize=(w, h))
    font_size = 15
    fig.subplots_adjust(left=0.02,
                        right=0.98,
                        top=0.96,
                        bottom=0.04,
                        hspace=0.15,
                        wspace=0.1)
    fig.suptitle("", fontsize=font_size)

    plot_grid = SubplotGrid(num_rows, num_cols)

    Lg = normalizeVector(np.array([-0.2, 0.3, 0.5]))
    Lg_img = lightSphere(Lg)

    L1 = normalizeVector(np.array([0.0, 0.7, 0.6]))
    L2 = normalizeVector(np.array([0.3, 0.5, 0.6]))

    # Ls = [normalizeVector(Lg * (1.0 - t) + t * L1) for t in np.linspace(0.0, 1.0, num_lights) ]
    Ls = [L1, L2]

    Ng_data = shapeFile(shape_name)
    Ng_data = loadNormal(Ng_data)
    Ng_32F, A_8U = Ng_data

    N0_file = shapeResultFile(result_name="InitialNormal",
                              data_name=shape_name)
    N0_data = loadNormal(N0_file)
    N0_32F, A_8U = N0_data
    A_8U = cv2.bilateralFilter(A_8U, 0, 5, 2)

    colormap_file = colorMapFile(cmap_id)
    M_32F = loadColorMap(colormap_file)
    C0_32F = ColorMapShader(M_32F).diffuseShading(Lg, Ng_32F)

    toon_sfs = ToonSFS(Lg, C0_32F, A_8U)
    toon_sfs.setInitialNormal(N0_32F)
    toon_sfs.setNumIterations(iterations=50)
    toon_sfs.setWeights(w_lap=0.2)
    toon_sfs.run()

    N_toon = toon_sfs.normal()
    C_toon = toon_sfs.shading()

    C_lumo, N_lumo = lumoSFS(C0_32F, Lg, N0_32F, A_8U)
    C_wu, N_wu = wuSFS(C0_32F, Lg, N0_32F, A_8U)

    M_lumo = estimatedReflectance(C0_32F, Lg, N_lumo, A_8U)
    M_wu = estimatedReflectance(C0_32F, Lg, N_wu, A_8U)

    plot_grid.showImage(Lg_img, "Light direction")
    plot_grid.showImage(setAlpha(C0_32F, to32F(A_8U)), "Ground-truth")

    title = ""
    plot_grid.showImage(setAlpha(C_lumo, to32F(A_8U)), "Lumo")
    #plot_grid.showColorMap(C_error_lumo, title, v_min=0, v_max=0.1, with_colorbar=True)
    plot_grid.showImage(setAlpha(C_wu, to32F(A_8U)), "Lambert assumption")
    #plot_grid.showColorMap(C_error_wu, title, v_min=0, v_max=0.1, with_colorbar=True)
    plot_grid.showImage(setAlpha(C_toon, to32F(A_8U)), "Our result")
    #plot_grid.showColorMap(C_error_toon, title, v_min=0, v_max=0.1, with_colorbar=True)

    for L in Ls:
        C1 = ColorMapShader(M_32F).diffuseShading(L, Ng_32F)

        C1_lumo = M_lumo.shading(LdotN(L,
                                       N_lumo).flatten()).reshape(C0_32F.shape)
        C1_wu = M_wu.shading(LdotN(L, N_wu).flatten()).reshape(C0_32F.shape)
        C1_toon = toon_sfs.relighting(L)

        plot_grid.showImage(lightSphere(L), "")

        plot_grid.showImage(setAlpha(C1, to32F(A_8U)), "")

        title = ""
        plot_grid.showImage(setAlpha(C1_lumo, to32F(A_8U)), "")
        #plot_grid.showColorMap(C_error_lumo, title, v_min=0, v_max=0.1, with_colorbar=True)
        plot_grid.showImage(setAlpha(C1_wu, to32F(A_8U)), "")
        #plot_grid.showColorMap(C_error_wu, title, v_min=0, v_max=0.1, with_colorbar=True)
        plot_grid.showImage(setAlpha(C1_toon, to32F(A_8U)), "")

    # showMaximize()
    file_path = shapeResultFile("Relighting",
                                "RelightingComparison",
                                file_ext=".png")
    fig.savefig(file_path, transparent=True)
def relightingVideo(shape_name="Ogre", cmap_id=3):
    num_methods = 3
    num_rows = 1
    num_cols = num_methods + 2

    num_lights = 120

    w = 10
    h = 5

    fig, axes = plt.subplots(figsize=(w, h))
    font_size = 15
    fig.subplots_adjust(left=0.02,
                        right=0.98,
                        top=0.96,
                        bottom=0.04,
                        hspace=0.15,
                        wspace=0.1)
    fig.suptitle("Shading Analysis", fontsize=font_size)

    plot_grid = SubplotGrid(num_rows, num_cols)

    Lg = normalizeVector(np.array([-0.2, 0.3, 0.5]))
    Lg_img = lightSphere(Lg)

    L1 = normalizeVector(np.array([0.5, 0.5, 0.6]))

    Ls = [
        normalizeVector(Lg * (1.0 - t) + t * L1)
        for t in np.linspace(0.0, 1.0, num_lights)
    ]
    # Ls = [normalizeVector(Lg + 1.0 * np.cos(t) * np.array([1, 0, 0]) + 1.0 * np.sin(t) * np.array([0, 1, 0])) for t in np.linspace(0.0, 1.0, num_lights) ]

    Ng_data = shapeFile(shape_name)
    Ng_data = loadNormal(Ng_data)
    Ng_32F, A_8U = Ng_data

    N0_file = shapeResultFile(result_name="InitialNormal",
                              data_name=shape_name)
    N0_data = loadNormal(N0_file)
    N0_32F, A_8U = N0_data
    A_8U = cv2.bilateralFilter(A_8U, 0, 5, 2)

    colormap_file = colorMapFile(cmap_id)
    M_32F = loadColorMap(colormap_file)
    C0_32F = ColorMapShader(M_32F).diffuseShading(Lg, Ng_32F)

    toon_sfs = ToonSFS(Lg, C0_32F, A_8U)
    toon_sfs.setInitialNormal(N0_32F)
    toon_sfs.setNumIterations(iterations=100)
    toon_sfs.setWeights(w_lap=0.2)
    toon_sfs.run()

    N_toon = toon_sfs.normal()
    C_toon = toon_sfs.shading()

    C_lumo, N_lumo = lumoSFS(C0_32F, Lg, N0_32F, A_8U)
    C_wu, N_wu = wuSFS(C0_32F, Lg, N0_32F, A_8U)

    M_lumo = estimatedReflectance(C0_32F, Lg, N_lumo, A_8U)
    M_wu = estimatedReflectance(C0_32F, Lg, N_wu, A_8U)

    plot_grid.showImage(Lg_img, "Light direction")
    plot_grid.showImage(setAlpha(C0_32F, to32F(A_8U)), "Ground-truth")

    title = ""
    plot_grid.showImage(setAlpha(C_lumo, to32F(A_8U)), "Lumo")
    #plot_grid.showColorMap(C_error_lumo, title, v_min=0, v_max=0.1, with_colorbar=True)
    plot_grid.showImage(setAlpha(C_wu, to32F(A_8U)), "Lambert assumption")
    #plot_grid.showColorMap(C_error_wu, title, v_min=0, v_max=0.1, with_colorbar=True)
    plot_grid.showImage(setAlpha(C_toon, to32F(A_8U)), "Our result")
    #plot_grid.showColorMap(C_error_toon, title, v_min=0, v_max=0.1, with_colorbar=True)

    images = []

    for i in xrange(48):
        images.append(figure2numpy(fig))

    for li, L in enumerate(Ls):
        print li
        fig.clear()
        fig.suptitle("Relighting", fontsize=font_size)
        plot_grid.setPlot(1, 1)

        C1 = ColorMapShader(M_32F).diffuseShading(L, Ng_32F)

        C1_lumo = M_lumo.shading(LdotN(L,
                                       N_lumo).flatten()).reshape(C0_32F.shape)
        C1_wu = M_wu.shading(LdotN(L, N_wu).flatten()).reshape(C0_32F.shape)
        C1_toon = toon_sfs.relighting(L)

        plot_grid.showImage(lightSphere(L), "Light direction")

        plot_grid.showImage(setAlpha(C1, to32F(A_8U)), "Ground-truth")

        title = ""
        plot_grid.showImage(setAlpha(C1_lumo, to32F(A_8U)), "Lumo")
        #plot_grid.showColorMap(C_error_lumo, title, v_min=0, v_max=0.1, with_colorbar=True)
        plot_grid.showImage(setAlpha(C1_wu, to32F(A_8U)), "Lambert assumption")
        #plot_grid.showColorMap(C_error_wu, title, v_min=0, v_max=0.1, with_colorbar=True)
        plot_grid.showImage(setAlpha(C1_toon, to32F(A_8U)), "Our result")

        images.append(figure2numpy(fig))

    file_path = shapeResultFile("Relighting",
                                "Relighting_%s_%s" % (shape_name, cmap_id),
                                file_ext=".wmv")
    saveVideo(file_path, images)
Exemple #33
0
def rgbFeatures(image):
    img_32F = to32F(image)
    features = img_32F[:, :, :3].reshape(-1, 3)
    return features
    def _computeSegmentaiton(self, C0_8U):
        C_32F = to32F(rgb(C0_8U))

        label0 = np.zeros(C_32F.shape[:3], dtype=np.uint8)

        colors = []

        for stroke_set in self._stroke_sets.strokeSets():
            print stroke_set.color()
            color = np.array(stroke_set.color())[:3]
            colors.append(color)
            color = np.int32(255 * color)

            print type(color[0])

            for stroke in stroke_set.strokes():
                if stroke.empty():
                    continue
                points = stroke.points()
                points = np.int32(points)

                brush_size = int(stroke.brushSize())

                print color
                cv2.polylines(label0, [points], 0, (color[0], color[1], color[2]), brush_size)

        colors = np.array(colors)

#         h, w = label0.shape[:2]
#
#         w_low = 512
#         h_low = w_low * h / w
#
#         gauide_filter = GuidedFilter(cv2.resize(C_32F, (w_low, h_low)), radius=11, epsilon=0.05)
#
#         label0 = cv2.resize(label0, (w_low, h_low))
#         h, w = label0.shape[:2]
#         label = np.array(label0)
#
#         dc = np.zeros((len(colors), h * w), dtype=np.float32)
#
#         for i in xrange(5):
#             label = gauide_filter.filter(label)
#             label[label0 > 0] = label0[label0 > 0]
#
#         label_flat = label.reshape(-1, 3)
#
#         for ci, color in enumerate(colors):
#             dc[ci, :] = normVectors(label_flat - color)
#
#         centers = np.argmin(dc, axis=0)
#
#         label_flat = colors[centers]
#         label = label_flat.reshape(h, w, 3)

#         kmeans = KMeans(C0_8U, num_colors=20)
#         centerImage = kmeans.centerImage()
#         self._view.render(centerImage)
#
#         histImage = kmeans.histImage()
#
#         plt.imshow(histImage)
#         plt.show()

        edgeSeg = EdgeBasedSegmentaiton(C0_8U)
        labels = edgeSeg.labels()
        plt.imshow(labels)
        plt.show()
def overviewFigure():
    cmap_id = 10
    colormap_file = colorMapFile(cmap_id)

    num_rows = 1
    num_cols = 5

    w = 10
    h = w * num_rows / num_cols

    fig, axes = plt.subplots(figsize=(w, h))
    font_size = 15
    fig.subplots_adjust(left=0.02, right=0.98, top=0.96, bottom=0.02, hspace=0.05, wspace=0.05)
    fig.suptitle("", fontsize=font_size)

    plot_grid = SubplotGrid(num_rows, num_cols)

    L = normalizeVector(np.array([-0.4, 0.6, 0.6]))
    L_img = lightSphere(L)

    shape_name = "ThreeBox"

    Ng_data = shapeFile(shape_name)
    Ng_data = loadNormal(Ng_data)
    Ng_32F, A_8U = Ng_data

    N0_file = shapeResultFile(result_name="InitialNormal", data_name=shape_name)
    N0_data = loadNormal(N0_file)
    N0_32F, A_8U = N0_data

    M_32F = loadColorMap(colormap_file)
    Cg_32F = ColorMapShader(M_32F).diffuseShading(L, Ng_32F)

    borders=[0.6, 0.8, 0.92]
    colors = [np.array([0.2, 0.2, 0.4]),
              np.array([0.3, 0.3, 0.6]),
              np.array([0.4, 0.4, 0.8]),
              np.array([0.5, 0.5, 1.0])]
    #Cg_32F = ToonShader(borders, colors).diffuseShading(L, Ng_32F)
    #Cg_32F = cv2.GaussianBlur(Cg_32F, (0,0), 2.0)

    sfs_method = ToonSFS(L, Cg_32F, A_8U)
    sfs_method.setInitialNormal(N0_32F)
    sfs_method.setNumIterations(iterations=40)
    sfs_method.setWeights(w_lap=10.0)
    sfs_method.run()

    N_32F = sfs_method.normal()
    I_32F = np.float32(np.clip(LdotN(L, N_32F), 0.0, 1.0))
    I0_32F = np.float32(np.clip(LdotN(L, N0_32F), 0.0, 1.0))
    C_32F = sfs_method.shading()
    C0_32F = sfs_method.initialShading()

    M_32F = sfs_method.colorMap().mapImage()

    L1 = normalizeVector(np.array([0.0, 0.6, 0.6]))
    L1_img = lightSphere(L1)
    C1_32F = sfs_method.relighting(L1)

    L2 = normalizeVector(np.array([0.5, 0.8, 0.6]))
    L2_img = lightSphere(L2)
    C2_32F = sfs_method.relighting(L2)

    N_sil = silhouetteNormal(A_8U, sigma=7.0)
    N_sil[:, :, 2]  = N_sil[:, :, 2] ** 10.0
    N_sil = normalizeImage(N_sil)
    A_sil = 1.0 - N_sil[:, :, 2]
    A_sil = to8U(A_sil)
    N_xy = N_sil[:, :, 0] ** 2 + N_sil[:, :, 1] ** 2
    A_sil[N_xy < 0.1] = 0

    title = ""
    plot_grid.showImage(setAlpha(Cg_32F, to32F(A_8U)), title)
    plot_grid.showImage(normalToColor(N0_32F, A_8U), title)
    plot_grid.showImage(setAlpha(C0_32F, to32F(A_8U)), title)
    plot_grid.showImage(normalToColor(N_32F, A_8U), title)

    plot_grid.showImage(setAlpha(C_32F, to32F(A_8U)), title)
    # plot_grid.showImage(normalToColor(Ng_32F, A_8U), title)

    #showMaximize()
    file_path = shapeResultFile("Overview", "Overview")
    fig.savefig(file_path, transparent=True)

    file_path = shapeResultFile("Overview", "Cg")
    saveRGBA(file_path, setAlpha(Cg_32F, to32F(A_8U)))

    file_path = shapeResultFile("Overview", "L")
    saveRGB(file_path, gray2rgb(to8U(L_img)))

    file_path = shapeResultFile("Overview", "L1")
    saveRGB(file_path, gray2rgb(to8U(L1_img)))

    file_path = shapeResultFile("Overview", "L2")
    saveRGB(file_path, gray2rgb(to8U(L2_img)))

    file_path = shapeResultFile("Overview", "N0")
    saveNormal(file_path, N0_32F, A_8U)

    file_path = shapeResultFile("Overview", "N_sil")
    saveNormal(file_path, N_sil, A_sil)

    file_path = shapeResultFile("Overview", "N")
    saveNormal(file_path, N_32F, A_8U)

    file_path = shapeResultFile("Overview", "C0")
    saveRGBA(file_path, setAlpha(C0_32F, to32F(A_8U)))

    file_path = shapeResultFile("Overview", "C")
    saveRGBA(file_path, setAlpha(C_32F, to32F(A_8U)))

    file_path = shapeResultFile("Overview", "C1")
    saveRGBA(file_path, setAlpha(C1_32F, to32F(A_8U)))

    file_path = shapeResultFile("Overview", "C2")
    saveRGBA(file_path, setAlpha(C2_32F, to32F(A_8U)))

    file_path = shapeResultFile("Overview", "I")
    saveRGBA(file_path, setAlpha(gray2rgb(I_32F), to32F(A_8U)))

    file_path = shapeResultFile("Overview", "I0")
    saveRGBA(file_path, setAlpha(gray2rgb(I0_32F), to32F(A_8U)))

    file_path = shapeResultFile("Overview", "M")
    saveRGB(file_path, M_32F)
Exemple #36
0
    def _runImp(self):
        normal_data = loadNormal(self._data_file)

        if normal_data is None:
            return

        N0_32F, A_8U = normal_data
        A_32F = to32F(A_8U)
        N0_32F = trim(N0_32F, A_8U)
        A_32F = trim(A_32F, A_8U)
        A_8U = trim(A_8U, A_8U)

        L = normalizeVector(np.array([0.5, -0.2, 0.7]))
        C0_32F = ToonShader().diffuseShading(L, N0_32F)
        I0_32F = luminance(C0_32F)

        I_min, I_max = np.min(I0_32F), np.max(I0_32F)
        I_scale = (I0_32F - I_min) / (I_max - I_min)
        I_L = cv2.Laplacian(cv2.GaussianBlur(I_scale, (0, 0), 31.0), cv2.CV_32F, ksize=1)

        I_L_avg = np.average(np.abs(I_L))

        Ix = cv2.Sobel(I0_32F, cv2.CV_64F, 1, 0, ksize=1)
        Ix = cv2.GaussianBlur(Ix, (0, 0), 3.0)
        Ixx = cv2.Sobel(Ix, cv2.CV_64F, 1, 0, ksize=1)
        Ixx = cv2.GaussianBlur(Ixx, (0, 0), 5.0)
        Iy = -cv2.Sobel(I0_32F, cv2.CV_64F, 0, 1, ksize=1)
        Iy = cv2.GaussianBlur(Iy, (0, 0), 3.0)
        Iyy = -cv2.Sobel(Iy, cv2.CV_64F, 0, 1, ksize=1)
        Iyy = cv2.GaussianBlur(Iyy, (0, 0), 5.0)

        fig, axes = plt.subplots(figsize=(11, 5))
        font_size = 15
        fig.subplots_adjust(left=0.05, right=0.95, top=0.9, hspace=0.12, wspace=0.05)
        fig.suptitle(self.name(), fontsize=font_size)

        num_rows = 2
        num_cols = 5
        plot_grid = SubplotGrid(num_rows, num_cols)

        Nx = cv2.Sobel(N0_32F[:, :, 0], cv2.CV_64F, 1, 0, ksize=1)
        Nx = cv2.GaussianBlur(Nx, (0, 0), 3.0)
        Nxx = cv2.Sobel(Nx, cv2.CV_64F, 1, 0, ksize=1)
        Nxx = cv2.GaussianBlur(Nxx, (0, 0), 5.0)
        Ny = -cv2.Sobel(N0_32F[:, :, 1], cv2.CV_64F, 0, 1, ksize=1)
        Ny = cv2.GaussianBlur(Ny, (0, 0), 3.0)
        Nyy = -cv2.Sobel(Ny, cv2.CV_64F, 0, 1, ksize=1)
        Nyy = cv2.GaussianBlur(Nyy, (0, 0), 5.0)
        Nz_L = cv2.Laplacian(cv2.GaussianBlur(N0_32F[:, :, 2], (0, 0), 5.0), cv2.CV_32F, ksize=5)

        Nz_L_avg = np.average(np.abs(Nz_L))

        Nz_L *= 1.0 / Nz_L_avg

        I_L *= 1.0 / I_L_avg

        print I_L_avg, Nz_L_avg

        Nz_L = np.clip(Nz_L, -5.0, 5.0)
        I_L = np.clip(I_L, -5.0, 5.0)

        plot_grid.showColorMap(N0_32F[:, :, 0], r'$N_{x}$', v_min=-0.01, v_max=0.01)
        plot_grid.showColorMap(N0_32F[:, :, 1], r'$N_{y}$', v_min=-0.01, v_max=0.01)
        plot_grid.showColorMap(Nx, r'$N_{xx}$', v_min=-0.01, v_max=0.01)
        plot_grid.showColorMap(Ny, r'$N_{yy}$', v_min=-0.01, v_max=0.01)
        plot_grid.showColorMap(Nz_L, r'$Nz_L$')
        #plot_grid.showColorMap(Nx + Ny, r'$N_{xx} + N_{yy}$', v_min=-0.01, v_max=0.01)

#         Ixx[Ixx>0] = 1.0
#         Ixx[Ixx<0] = -1.0
#         Iyy[Iyy>0] = 1.0
#         Iyy[Iyy<0] = -1.0
        plot_grid.showColorMap(-Ix, r'$I_{x}$', v_min=-0.001, v_max=0.001)
        plot_grid.showColorMap(-Iy, r'$I_{y}$', v_min=-0.001, v_max=0.001)
        plot_grid.showColorMap(-Ixx, r'$I_{xx}$', v_min=-0.001, v_max=0.001)
        plot_grid.showColorMap(-Iyy, r'$I_{yy}$', v_min=-0.001, v_max=0.001)
        plot_grid.showColorMap(I_L, r'$I_L$')
        #plot_grid.showColorMap(-Ixx - Iyy, r'$I_{xx} + I_{yy}$', v_min=-0.01, v_max=0.01)
        #plot_grid.showColorMap(Iy, r'$I_{y}$')

        showMaximize()
    def _runLayer(self, layer_file):
        C0_8U = loadRGBA(layer_file)

        if C0_8U is None:
            return

        A_8U = alpha(C0_8U)

        if A_8U is None:
            return

        A_32F = to32F(A_8U)

        C0_32F = to32F(rgb(C0_8U))
        I0_32F = luminance(C0_32F)

        initial_normals = ["N_lumo.png", "N0_d.png"]

        layer_name = os.path.splitext(os.path.basename(layer_file))[0]

        for initial_normal in initial_normals:
            N0_32F, AN_8U = loadNormal(
                self.characterResultFile(initial_normal,
                                         data_name="BaseDetailSepration"))
            N_32F, L, C_32F, M = self._runSFS(C0_32F, A_8U, N0_32F, AN_8U)

            L_img = lightSphere(L)

            M_img = M.mapImage()

            fig, axes = plt.subplots(figsize=(11, 5))
            font_size = 15
            fig.subplots_adjust(left=0.02,
                                right=0.98,
                                top=0.9,
                                hspace=0.12,
                                wspace=0.02)
            fig.suptitle(self.name(), fontsize=font_size)

            num_rows = 1
            num_cols = 4
            plot_grid = SubplotGrid(num_rows, num_cols)

            plot_grid.showImage(normalToColor(N0_32F, A_8U),
                                r'Initial Normal: $N_0$')
            plot_grid.showImage(normalToColor(N_32F, A_8U),
                                r'Estimated Normal: $N$')
            plot_grid.showImage(C0_8U, r'Shading: $C_0$')
            plot_grid.showImage(setAlpha(C_32F, A_32F),
                                r'Recovered Shading: $C$')

            out_file_path = self.characterResultFile("ToonSFS" +
                                                     initial_normal,
                                                     layer_name=layer_name)
            plt.savefig(out_file_path)

            N_trim = trim(N_32F, A_8U)
            N0_trim = trim(N0_32F, A_8U)
            C0_trim = trim(C0_32F, A_8U)
            A_trim = trim(A_8U, A_8U)

            out_file_path = self.characterResultFile(initial_normal,
                                                     layer_name=layer_name)
            saveNormal(out_file_path, N_trim, A_trim)

            images = self._relightingImages(N_trim, A_trim, M)

            initial_normal_name = os.path.splitext(initial_normal)[0]
            video_name = "Relighting" + initial_normal_name + ".wmv"
            out_file_path = self.characterResultFile(video_name,
                                                     layer_name=layer_name)
            saveVideo(out_file_path, images)

            images = self._relightingOffsetImages(L, C0_trim, N0_trim, A_trim,
                                                  M)
            video_name = "RelightingOffset" + initial_normal_name + ".wmv"
            out_file_path = self.characterResultFile(video_name,
                                                     layer_name=layer_name)
            saveVideo(out_file_path, images)