def materialList():
    shape_name = "ThreeBox"
    num_rows = 1
    num_cols = len(colorMapFiles())

    w = 24
    h = w * num_rows / num_cols

    L = normalizeVector(np.array([-0.4, 0.5, 0.6]))

    fig, axes = plt.subplots(figsize=(w, h))
    font_size = 15
    fig.subplots_adjust(left=0.02, right=0.98, top=0.96, bottom=0.04, hspace=0.1, wspace=0.05)
    fig.suptitle("", fontsize=font_size)

    plot_grid = SubplotGrid(num_rows, num_cols)

    Ng_data = shapeFile(shape_name)
    Ng_data = loadNormal(Ng_data)
    Ng_32F, A_8U = Ng_data

    for colormap_file in colorMapFilesSortedReflectanceError():
        M_32F = loadColorMap(colormap_file)


        C0_32F = ColorMapShader(M_32F).diffuseShading(L, Ng_32F)

        plot_grid.showImage(setAlpha(C0_32F, to32F(A_8U)), "")

    file_path = shapeResultFile("ShapeEstimation", "MaterialList")
    fig.savefig(file_path, transparent=True)
def shapeList():

    num_rows = 1
    num_cols = len(shapeNames())

    w = 20
    h = w * num_rows / num_cols

    cmap_id = 10
    colormap_file = colorMapFile(cmap_id)
    M_32F = loadColorMap(colormap_file)

    L = normalizeVector(np.array([-0.4, 0.5, 0.6]))

    fig, axes = plt.subplots(figsize=(w, h))
    font_size = 15
    fig.subplots_adjust(left=0.02, right=0.98, top=0.96, bottom=0.04, hspace=0.15, wspace=0.1)
    fig.suptitle("", fontsize=font_size)

    plot_grid = SubplotGrid(num_rows, num_cols)

    for shape_name in shapeNames():
        Ng_data = shapeFile(shape_name)
        Ng_data = loadNormal(Ng_data)
        Ng_32F, A_8U = Ng_data

        C0_32F = ColorMapShader(M_32F).diffuseShading(L, Ng_32F)

        plot_grid.showImage(setAlpha(C0_32F, to32F(A_8U)), "")

    file_path = shapeResultFile("ShapeEstimation", "ShapeList")
    fig.savefig(file_path, transparent=True)
def materialList():
    shape_name = "ThreeBox"
    num_rows = 1
    num_cols = len(colorMapFiles())

    w = 24
    h = w * num_rows / num_cols

    L = normalizeVector(np.array([-0.4, 0.5, 0.6]))

    fig, axes = plt.subplots(figsize=(w, h))
    font_size = 15
    fig.subplots_adjust(left=0.02,
                        right=0.98,
                        top=0.96,
                        bottom=0.04,
                        hspace=0.1,
                        wspace=0.05)
    fig.suptitle("", fontsize=font_size)

    plot_grid = SubplotGrid(num_rows, num_cols)

    Ng_data = shapeFile(shape_name)
    Ng_data = loadNormal(Ng_data)
    Ng_32F, A_8U = Ng_data

    for colormap_file in colorMapFilesSortedReflectanceError():
        M_32F = loadColorMap(colormap_file)

        C0_32F = ColorMapShader(M_32F).diffuseShading(L, Ng_32F)

        plot_grid.showImage(setAlpha(C0_32F, to32F(A_8U)), "")

    file_path = shapeResultFile("ShapeEstimation", "MaterialList")
    fig.savefig(file_path, transparent=True)
def materialErrorTable():
    shape_name = "ThreeBox"

    L = normalizeVector(np.array([-0.4, 0.5, 0.6]))

    num_materials = len(colorMapFiles())
    C_errors = np.zeros((num_materials, 3))
    N_errors = np.zeros((num_materials, 3))
    I_errors = np.zeros((num_materials, 3))

    Ng_data = shapeFile(shape_name)
    Ng_data = loadNormal(Ng_data)
    Ng_32F, A_8U = Ng_data

    N0_file = shapeResultFile(result_name="InitialNormal", data_name=shape_name)
    N0_data = loadNormal(N0_file)
    N0_32F, A_8U = N0_data
    A_8U = cv2.bilateralFilter(A_8U, 0, 5, 2)

    for mi, color_map_file in enumerate(colorMapFiles()):
        M_32F = loadColorMap(color_map_file)

        C0_32F = ColorMapShader(M_32F).diffuseShading(L, Ng_32F)

        toon_sfs = ToonSFS(L, C0_32F, A_8U)
        toon_sfs.setInitialNormal(N0_32F)
        toon_sfs.setNumIterations(iterations=20)
        toon_sfs.setWeights(w_lap=9.0)
        toon_sfs.run()

        N_toon = toon_sfs.normal()
        C_toon = toon_sfs.shading()

        C_lumo, N_lumo = lumoSFS(C0_32F, L, N0_32F, A_8U)
        C_wu, N_wu = wuSFS(C0_32F, L, N0_32F, A_8U)

        C_error_toon, N_error_toon, I_error_toon = computeErrors(L, C0_32F, C_toon, Ng_32F, N_toon, A_8U)
        C_error_lumo, N_error_lumo, I_error_lumo = computeErrors(L, C0_32F, C_lumo, Ng_32F, N_lumo, A_8U)
        C_error_wu, N_error_wu, I_error_wu = computeErrors(L, C0_32F, C_wu, Ng_32F, N_wu, A_8U)

        C_errors[mi, 0] = np.mean(C_error_toon)
        C_errors[mi, 1] = np.mean(C_error_lumo)
        C_errors[mi, 2] = np.mean(C_error_wu)

        I_errors[mi, 0] = np.mean(I_error_toon)
        I_errors[mi, 1] = np.mean(I_error_lumo)
        I_errors[mi, 2] = np.mean(I_error_wu)

        N_errors[mi, 0] = np.mean(N_error_toon)
        N_errors[mi, 1] = np.mean(N_error_lumo)
        N_errors[mi, 2] = np.mean(N_error_wu)

    file_path = shapeResultFile("ShapeEstimation", "MaterialShadingError", file_ext=".npy")
    np.save(file_path, C_errors)

    file_path = shapeResultFile("ShapeEstimation", "MaterialNormalError", file_ext=".npy")
    np.save(file_path, N_errors)

    file_path = shapeResultFile("ShapeEstimation", "MaterialIlluminationError", file_ext=".npy")
    np.save(file_path, I_errors)
def computeErrorTables(Lg=normalizeVector(np.array([-0.2, 0.3, 0.6]))):
    colormap_files = colorMapFiles()
    shape_names = shapeNames()

    num_materials = len(colormap_files)
    num_shapes = len(shape_names)

    L_errors = np.zeros((num_shapes, num_materials))

    Ms = []
    for colormap_file in colormap_files:
        M_32F = loadColorMap(colormap_file)
        Ms.append(M_32F)

    for si, shape_name in enumerate(shape_names):
        Ng_data = shapeFile(shape_name)

        Ng_data = loadNormal(Ng_data)
        Ng_32F, A_8U = Ng_data

        N0_file = shapeResultFile(result_name="InitialNormal", data_name=shape_name)
        N0_data = loadNormal(N0_file)
        N0_32F, A_8U = N0_data

        for mi, M_32F in enumerate(Ms):
            C0_32F = ColorMapShader(M_32F).diffuseShading(Lg, Ng_32F)
            I_32F = luminance(C0_32F)

            L = lightEstimation(I_32F, N0_32F, A_8U)

            L_errors[si, mi] = angleError(Lg, L)

    file_path = shapeResultFile("LightEstimation", "LightEstimationError", file_ext=".npy")
    np.save(file_path, L_errors)
def computeLambertShadingError():
    shape_names = shapeNames()

    L = normalizeVector(np.array([-0.2, 0.3, 0.6]))

    C_errors = np.zeros(len(shape_names))
    N_errors = np.zeros(len(shape_names))

    for si, shape_name in enumerate(shape_names):
        Ng_data = shapeFile(shape_name)

        Ng_data = loadNormal(Ng_data)
        Ng_32F, A_8U = Ng_data

        N0_file = shapeResultFile(result_name="InitialNormal",
                                  data_name=shape_name)
        N0_data = loadNormal(N0_file)
        N0_32F, A_8U = N0_data

        C0_32F = LambertShader().diffuseShading(L, Ng_32F)

        sfs_method = ToonSFS(L, C0_32F, A_8U)
        sfs_method.setInitialNormal(N0_32F)
        sfs_method.setNumIterations(iterations=60)
        sfs_method.run()
        N_32F = sfs_method.normal()
        C_32F = sfs_method.shading()
        C_error = sfs_method.shadingError()
        C_error[A_8U < 0.5 * np.max(A_8U)] = 0.0

        C_errors[si] = np.average(C_error[A_8U > 0.5 * np.max(A_8U)])

        h, w = A_8U.shape[:2]
        N_error = angleErros(N_32F.reshape(-1, 3),
                             Ng_32F.reshape(-1, 3)).reshape(h, w)
        N_error[A_8U < 0.5 * np.max(A_8U)] = 0.0
        N_errors[si] = np.average(N_error[A_8U > 0.5 * np.max(A_8U)])

    file_path = shapeResultFile("ShapeEstimation",
                                "ShadingError",
                                file_ext=".npy")
    np.save(file_path, C_errors)

    file_path = shapeResultFile("ShapeEstimation",
                                "NormalError",
                                file_ext=".npy")
    np.save(file_path, N_errors)
Exemple #7
0
def stylizedShadingFigure():
    target_shapes = ["Man", "Ogre", "Grog", "Vase"]
    target_shapes = [shapeFile(shape_name) for shape_name in target_shapes]

    target_colormaps = [1, 5, 10, 3]
    target_colormaps = [colorMapFile(cmap_id) for cmap_id in target_colormaps]

    fig, axes = plt.subplots(figsize=(12, 4))
    font_size = 15
    fig.subplots_adjust(left=0.02,
                        right=0.98,
                        top=0.98,
                        bottom=0.02,
                        hspace=0.1,
                        wspace=0.1)
    fig.suptitle("", fontsize=font_size)

    num_rows = 1
    num_cols = 4
    plot_grid = SubplotGrid(num_rows, num_cols)

    Ls = []
    Ls.append(normalizeVector(np.array([-0.5, 0.3, 0.7])))
    Ls.append(normalizeVector(np.array([0.2, -0.35, 0.4])))
    Ls.append(normalizeVector(np.array([-0.2, 0.6, 0.3])))
    Ls.append(normalizeVector(np.array([-0.2, 0.6, 0.3])))

    for shape_file, colormap_file, L in zip(target_shapes, target_colormaps,
                                            Ls):
        N_32F, A_8U = loadNormal(shape_file)
        M_32F = loadColorMap(colormap_file)
        C_32F = ColorMapShader(M_32F).diffuseShading(L, N_32F)
        #         C_32F = trim(C_32F, A_8U)
        #         A_8U = trim(A_8U, A_8U)
        C_32F = setAlpha(C_32F, to32F(A_8U))

        #         h, w = C_32F.shape[:2]
        #
        #         h_t = 512
        #         w_t = w * h_t / h
        #         C_32F = cv2.resize(C_32F, (w_t, h_t))
        plot_grid.showImage(C_32F, "", alpha_clip=True)

    file_path = os.path.join(shapeResultsDir(), "StylizedShading.png")
    fig.savefig(file_path, transparent=True)
def computeLambertShadingError():
    shape_names = shapeNames()

    L = normalizeVector(np.array([-0.2, 0.3, 0.6]))

    C_errors = np.zeros(len(shape_names))
    N_errors = np.zeros(len(shape_names))

    for si, shape_name in enumerate(shape_names):
        Ng_data = shapeFile(shape_name)

        Ng_data = loadNormal(Ng_data)
        Ng_32F, A_8U = Ng_data

        N0_file = shapeResultFile(result_name="InitialNormal", data_name=shape_name)
        N0_data = loadNormal(N0_file)
        N0_32F, A_8U = N0_data

        C0_32F = LambertShader().diffuseShading(L, Ng_32F)

        sfs_method = ToonSFS(L, C0_32F, A_8U)
        sfs_method.setInitialNormal(N0_32F)
        sfs_method.setNumIterations(iterations=60)
        sfs_method.run()
        N_32F = sfs_method.normal()
        C_32F = sfs_method.shading()
        C_error = sfs_method.shadingError()
        C_error[A_8U < 0.5 * np.max(A_8U)] = 0.0

        C_errors[si] = np.average(C_error[A_8U > 0.5 * np.max(A_8U)])

        h, w = A_8U.shape[:2]
        N_error = angleErros(N_32F.reshape(-1, 3), Ng_32F.reshape(-1, 3)).reshape(h, w)
        N_error[A_8U < 0.5 * np.max(A_8U)] = 0.0
        N_errors[si] = np.average(N_error[A_8U > 0.5 * np.max(A_8U)])

    file_path = shapeResultFile("ShapeEstimation", "ShadingError", file_ext=".npy")
    np.save(file_path, C_errors)

    file_path = shapeResultFile("ShapeEstimation", "NormalError", file_ext=".npy")
    np.save(file_path, N_errors)
def stylizedShadingFigure():
    target_shapes = ["Man", "Ogre", "Grog", "Vase"]
    target_shapes = [shapeFile(shape_name) for shape_name in target_shapes]

    target_colormaps = [1, 5, 10, 3]
    target_colormaps = [colorMapFile(cmap_id) for cmap_id in target_colormaps]

    fig, axes = plt.subplots(figsize=(12, 4))
    font_size = 15
    fig.subplots_adjust(left=0.02, right=0.98, top=0.98, bottom=0.02, hspace=0.1, wspace=0.1)
    fig.suptitle("", fontsize=font_size)

    num_rows = 1
    num_cols = 4
    plot_grid = SubplotGrid(num_rows, num_cols)

    Ls = []
    Ls.append(normalizeVector(np.array([-0.5, 0.3, 0.7])))
    Ls.append(normalizeVector(np.array([0.2, -0.35, 0.4])))
    Ls.append(normalizeVector(np.array([-0.2, 0.6, 0.3])))
    Ls.append(normalizeVector(np.array([-0.2, 0.6, 0.3])))


    for shape_file, colormap_file, L in zip(target_shapes, target_colormaps, Ls):
        N_32F, A_8U = loadNormal(shape_file)
        M_32F = loadColorMap(colormap_file)
        C_32F = ColorMapShader(M_32F).diffuseShading(L, N_32F)
#         C_32F = trim(C_32F, A_8U)
#         A_8U = trim(A_8U, A_8U)
        C_32F = setAlpha(C_32F, to32F(A_8U))

#         h, w = C_32F.shape[:2]
#
#         h_t = 512
#         w_t = w * h_t / h
#         C_32F = cv2.resize(C_32F, (w_t, h_t))
        plot_grid.showImage(C_32F, "", alpha_clip=True)

    file_path = os.path.join(shapeResultsDir(), "StylizedShading.png")
    fig.savefig(file_path, transparent=True)
def shapeList():

    num_rows = 1
    num_cols = len(shapeNames())

    w = 20
    h = w * num_rows / num_cols

    cmap_id = 10
    colormap_file = colorMapFile(cmap_id)
    M_32F = loadColorMap(colormap_file)

    L = normalizeVector(np.array([-0.4, 0.5, 0.6]))

    fig, axes = plt.subplots(figsize=(w, h))
    font_size = 15
    fig.subplots_adjust(left=0.02,
                        right=0.98,
                        top=0.96,
                        bottom=0.04,
                        hspace=0.15,
                        wspace=0.1)
    fig.suptitle("", fontsize=font_size)

    plot_grid = SubplotGrid(num_rows, num_cols)

    for shape_name in shapeNames():
        Ng_data = shapeFile(shape_name)
        Ng_data = loadNormal(Ng_data)
        Ng_32F, A_8U = Ng_data

        C0_32F = ColorMapShader(M_32F).diffuseShading(L, Ng_32F)

        plot_grid.showImage(setAlpha(C0_32F, to32F(A_8U)), "")

    file_path = shapeResultFile("ShapeEstimation", "ShapeList")
    fig.savefig(file_path, transparent=True)
def overviewFigure():
    cmap_id = 10
    colormap_file = colorMapFile(cmap_id)

    num_rows = 1
    num_cols = 5

    w = 10
    h = w * num_rows / num_cols

    fig, axes = plt.subplots(figsize=(w, h))
    font_size = 15
    fig.subplots_adjust(left=0.02, right=0.98, top=0.96, bottom=0.02, hspace=0.05, wspace=0.05)
    fig.suptitle("", fontsize=font_size)

    plot_grid = SubplotGrid(num_rows, num_cols)

    L = normalizeVector(np.array([-0.4, 0.6, 0.6]))
    L_img = lightSphere(L)

    shape_name = "ThreeBox"

    Ng_data = shapeFile(shape_name)
    Ng_data = loadNormal(Ng_data)
    Ng_32F, A_8U = Ng_data

    N0_file = shapeResultFile(result_name="InitialNormal", data_name=shape_name)
    N0_data = loadNormal(N0_file)
    N0_32F, A_8U = N0_data

    M_32F = loadColorMap(colormap_file)
    Cg_32F = ColorMapShader(M_32F).diffuseShading(L, Ng_32F)

    borders=[0.6, 0.8, 0.92]
    colors = [np.array([0.2, 0.2, 0.4]),
              np.array([0.3, 0.3, 0.6]),
              np.array([0.4, 0.4, 0.8]),
              np.array([0.5, 0.5, 1.0])]
    #Cg_32F = ToonShader(borders, colors).diffuseShading(L, Ng_32F)
    #Cg_32F = cv2.GaussianBlur(Cg_32F, (0,0), 2.0)

    sfs_method = ToonSFS(L, Cg_32F, A_8U)
    sfs_method.setInitialNormal(N0_32F)
    sfs_method.setNumIterations(iterations=40)
    sfs_method.setWeights(w_lap=10.0)
    sfs_method.run()

    N_32F = sfs_method.normal()
    I_32F = np.float32(np.clip(LdotN(L, N_32F), 0.0, 1.0))
    I0_32F = np.float32(np.clip(LdotN(L, N0_32F), 0.0, 1.0))
    C_32F = sfs_method.shading()
    C0_32F = sfs_method.initialShading()

    M_32F = sfs_method.colorMap().mapImage()

    L1 = normalizeVector(np.array([0.0, 0.6, 0.6]))
    L1_img = lightSphere(L1)
    C1_32F = sfs_method.relighting(L1)

    L2 = normalizeVector(np.array([0.5, 0.8, 0.6]))
    L2_img = lightSphere(L2)
    C2_32F = sfs_method.relighting(L2)

    N_sil = silhouetteNormal(A_8U, sigma=7.0)
    N_sil[:, :, 2]  = N_sil[:, :, 2] ** 10.0
    N_sil = normalizeImage(N_sil)
    A_sil = 1.0 - N_sil[:, :, 2]
    A_sil = to8U(A_sil)
    N_xy = N_sil[:, :, 0] ** 2 + N_sil[:, :, 1] ** 2
    A_sil[N_xy < 0.1] = 0

    title = ""
    plot_grid.showImage(setAlpha(Cg_32F, to32F(A_8U)), title)
    plot_grid.showImage(normalToColor(N0_32F, A_8U), title)
    plot_grid.showImage(setAlpha(C0_32F, to32F(A_8U)), title)
    plot_grid.showImage(normalToColor(N_32F, A_8U), title)

    plot_grid.showImage(setAlpha(C_32F, to32F(A_8U)), title)
    # plot_grid.showImage(normalToColor(Ng_32F, A_8U), title)

    #showMaximize()
    file_path = shapeResultFile("Overview", "Overview")
    fig.savefig(file_path, transparent=True)

    file_path = shapeResultFile("Overview", "Cg")
    saveRGBA(file_path, setAlpha(Cg_32F, to32F(A_8U)))

    file_path = shapeResultFile("Overview", "L")
    saveRGB(file_path, gray2rgb(to8U(L_img)))

    file_path = shapeResultFile("Overview", "L1")
    saveRGB(file_path, gray2rgb(to8U(L1_img)))

    file_path = shapeResultFile("Overview", "L2")
    saveRGB(file_path, gray2rgb(to8U(L2_img)))

    file_path = shapeResultFile("Overview", "N0")
    saveNormal(file_path, N0_32F, A_8U)

    file_path = shapeResultFile("Overview", "N_sil")
    saveNormal(file_path, N_sil, A_sil)

    file_path = shapeResultFile("Overview", "N")
    saveNormal(file_path, N_32F, A_8U)

    file_path = shapeResultFile("Overview", "C0")
    saveRGBA(file_path, setAlpha(C0_32F, to32F(A_8U)))

    file_path = shapeResultFile("Overview", "C")
    saveRGBA(file_path, setAlpha(C_32F, to32F(A_8U)))

    file_path = shapeResultFile("Overview", "C1")
    saveRGBA(file_path, setAlpha(C1_32F, to32F(A_8U)))

    file_path = shapeResultFile("Overview", "C2")
    saveRGBA(file_path, setAlpha(C2_32F, to32F(A_8U)))

    file_path = shapeResultFile("Overview", "I")
    saveRGBA(file_path, setAlpha(gray2rgb(I_32F), to32F(A_8U)))

    file_path = shapeResultFile("Overview", "I0")
    saveRGBA(file_path, setAlpha(gray2rgb(I0_32F), to32F(A_8U)))

    file_path = shapeResultFile("Overview", "M")
    saveRGB(file_path, M_32F)
def methodComparisonFigure(shape_name="ThreeBox", cmap_id=10):
    num_methods = 3
    num_rows = 3
    num_cols = 2 * num_methods + 1

    w = 20
    h = w * num_rows / num_cols

    fig, axes = plt.subplots(figsize=(w, h))
    font_size = 15
    fig.subplots_adjust(left=0.02,
                        right=0.98,
                        top=0.96,
                        bottom=0.04,
                        hspace=0.15,
                        wspace=0.1)
    fig.suptitle("", fontsize=font_size)

    plot_grid = SubplotGrid(num_rows, num_cols)

    L = normalizeVector(np.array([-0.4, 0.5, 0.6]))

    Ng_data = shapeFile(shape_name)
    Ng_data = loadNormal(Ng_data)
    Ng_32F, A_8U = Ng_data

    N0_file = shapeResultFile(result_name="InitialNormal",
                              data_name=shape_name)
    N0_data = loadNormal(N0_file)
    N0_32F, A_8U = N0_data
    A_8U = cv2.bilateralFilter(A_8U, 0, 5, 2)

    colormap_file = colorMapFile(cmap_id)
    M_32F = loadColorMap(colormap_file)
    C0_32F = ColorMapShader(M_32F).diffuseShading(L, Ng_32F)

    toon_sfs = ToonSFS(L, C0_32F, A_8U)
    toon_sfs.setInitialNormal(N0_32F)
    toon_sfs.setNumIterations(iterations=100)
    toon_sfs.setWeights(w_lap=0.1)
    toon_sfs.run()

    N_toon = toon_sfs.normal()
    C_toon = toon_sfs.shading()

    C_lumo, N_lumo = lumoSFS(C0_32F, L, N0_32F, A_8U)
    C_wu, N_wu = wuSFS(C0_32F, L, N0_32F, A_8U)

    C_error_toon, N_error_toon, I_error_toon = computeErrors(
        L, C0_32F, C_toon, Ng_32F, N_toon, A_8U)
    C_error_lumo, N_error_lumo, I_error_lumo = computeErrors(
        L, C0_32F, C_lumo, Ng_32F, N_lumo, A_8U)
    C_error_wu, N_error_wu, I_error_wu = computeErrors(L, C0_32F, C_wu, Ng_32F,
                                                       N_wu, A_8U)

    plot_grid.showImage(setAlpha(C0_32F, to32F(A_8U)), "Ground-truth")

    title = ""
    plot_grid.showImage(setAlpha(C_lumo, to32F(A_8U)), "Lumo")
    plot_grid.showColorMap(C_error_lumo,
                           title,
                           v_min=0,
                           v_max=0.1,
                           with_colorbar=True)
    plot_grid.showImage(setAlpha(C_wu, to32F(A_8U)), "Lambert assumption")
    plot_grid.showColorMap(C_error_wu,
                           title,
                           v_min=0,
                           v_max=0.1,
                           with_colorbar=True)
    plot_grid.showImage(setAlpha(C_toon, to32F(A_8U)), "Our result")
    plot_grid.showColorMap(C_error_toon,
                           title,
                           v_min=0,
                           v_max=0.1,
                           with_colorbar=True)

    plot_grid.showImage(normalToColor(Ng_32F, A_8U), title)

    plot_grid.showImage(normalToColor(N_lumo, A_8U), title)
    plot_grid.showColorMap(N_error_lumo,
                           title,
                           v_min=0,
                           v_max=50.0,
                           with_colorbar=True)
    plot_grid.showImage(normalToColor(N_wu, A_8U), title)
    plot_grid.showColorMap(N_error_wu,
                           title,
                           v_min=0,
                           v_max=50.0,
                           with_colorbar=True)
    plot_grid.showImage(normalToColor(N_toon, A_8U), title)
    plot_grid.showColorMap(N_error_toon,
                           title,
                           v_min=0,
                           v_max=50.0,
                           with_colorbar=True)

    plot_grid.showImage(computeIllumination(L, Ng_32F, A_8U), title)

    plot_grid.showImage(computeIllumination(L, N_lumo, A_8U), title)
    plot_grid.showColorMap(I_error_lumo,
                           title,
                           v_min=0,
                           v_max=0.2,
                           with_colorbar=True)
    plot_grid.showImage(computeIllumination(L, N_wu, A_8U), title)
    plot_grid.showColorMap(I_error_wu,
                           title,
                           v_min=0,
                           v_max=0.2,
                           with_colorbar=True)
    plot_grid.showImage(computeIllumination(L, N_toon, A_8U), title)
    plot_grid.showColorMap(I_error_toon,
                           title,
                           v_min=0,
                           v_max=0.2,
                           with_colorbar=True)

    # showMaximize()
    file_path = shapeResultFile("ShapeEstimation",
                                "Comparison_%s_%s" % (shape_name, cmap_id),
                                file_ext=".png")
    fig.savefig(file_path, transparent=True)
def shapeErrorTable():
    cmap_id = 10
    colormap_file = colorMapFile(cmap_id)
    M_32F = loadColorMap(colormap_file)

    L = normalizeVector(np.array([-0.4, 0.5, 0.6]))

    num_shapes = len(shapeNames())
    C_errors = np.zeros((num_shapes, 3))
    N_errors = np.zeros((num_shapes, 3))
    I_errors = np.zeros((num_shapes, 3))

    for si, shape_name in enumerate(shapeNames()):
        Ng_data = shapeFile(shape_name)
        Ng_data = loadNormal(Ng_data)
        Ng_32F, A_8U = Ng_data

        N0_file = shapeResultFile(result_name="InitialNormal",
                                  data_name=shape_name)
        N0_data = loadNormal(N0_file)
        N0_32F, A_8U = N0_data
        A_8U = cv2.bilateralFilter(A_8U, 0, 5, 2)
        C0_32F = ColorMapShader(M_32F).diffuseShading(L, Ng_32F)

        toon_sfs = ToonSFS(L, C0_32F, A_8U)
        toon_sfs.setInitialNormal(N0_32F)
        toon_sfs.setNumIterations(iterations=20)
        toon_sfs.setWeights(w_lap=9.0)
        toon_sfs.run()

        N_toon = toon_sfs.normal()
        C_toon = toon_sfs.shading()

        C_lumo, N_lumo = lumoSFS(C0_32F, L, N0_32F, A_8U)
        C_wu, N_wu = wuSFS(C0_32F, L, N0_32F, A_8U)

        C_error_toon, N_error_toon, I_error_toon = computeErrors(
            L, C0_32F, C_toon, Ng_32F, N_toon, A_8U)
        C_error_lumo, N_error_lumo, I_error_lumo = computeErrors(
            L, C0_32F, C_lumo, Ng_32F, N_lumo, A_8U)
        C_error_wu, N_error_wu, I_error_wu = computeErrors(
            L, C0_32F, C_wu, Ng_32F, N_wu, A_8U)

        C_errors[si, 0] = np.mean(C_error_toon)
        C_errors[si, 1] = np.mean(C_error_lumo)
        C_errors[si, 2] = np.mean(C_error_wu)

        I_errors[si, 0] = np.mean(I_error_toon)
        I_errors[si, 1] = np.mean(I_error_lumo)
        I_errors[si, 2] = np.mean(I_error_wu)

        N_errors[si, 0] = np.mean(N_error_toon)
        N_errors[si, 1] = np.mean(N_error_lumo)
        N_errors[si, 2] = np.mean(N_error_wu)

    file_path = shapeResultFile("ShapeEstimation",
                                "ShapeShadingError",
                                file_ext=".npy")
    np.save(file_path, C_errors)

    file_path = shapeResultFile("ShapeEstimation",
                                "ShapeNormalError",
                                file_ext=".npy")
    np.save(file_path, N_errors)

    file_path = shapeResultFile("ShapeEstimation",
                                "ShapeIlluminationErrorShape",
                                file_ext=".npy")
    np.save(file_path, I_errors)

    showShapeErrorTable()
def relightingFigure(shape_name="Vase", cmap_id=3):
    num_methods = 3
    num_lights = 2
    num_rows = num_lights + 1
    num_cols = num_methods + 2

    w = 15
    h = w * num_rows / num_cols

    fig, axes = plt.subplots(figsize=(w, h))
    font_size = 15
    fig.subplots_adjust(left=0.02,
                        right=0.98,
                        top=0.96,
                        bottom=0.04,
                        hspace=0.15,
                        wspace=0.1)
    fig.suptitle("", fontsize=font_size)

    plot_grid = SubplotGrid(num_rows, num_cols)

    Lg = normalizeVector(np.array([-0.2, 0.3, 0.5]))
    Lg_img = lightSphere(Lg)

    L1 = normalizeVector(np.array([0.0, 0.7, 0.6]))
    L2 = normalizeVector(np.array([0.3, 0.5, 0.6]))

    # Ls = [normalizeVector(Lg * (1.0 - t) + t * L1) for t in np.linspace(0.0, 1.0, num_lights) ]
    Ls = [L1, L2]

    Ng_data = shapeFile(shape_name)
    Ng_data = loadNormal(Ng_data)
    Ng_32F, A_8U = Ng_data

    N0_file = shapeResultFile(result_name="InitialNormal",
                              data_name=shape_name)
    N0_data = loadNormal(N0_file)
    N0_32F, A_8U = N0_data
    A_8U = cv2.bilateralFilter(A_8U, 0, 5, 2)

    colormap_file = colorMapFile(cmap_id)
    M_32F = loadColorMap(colormap_file)
    C0_32F = ColorMapShader(M_32F).diffuseShading(Lg, Ng_32F)

    toon_sfs = ToonSFS(Lg, C0_32F, A_8U)
    toon_sfs.setInitialNormal(N0_32F)
    toon_sfs.setNumIterations(iterations=50)
    toon_sfs.setWeights(w_lap=0.2)
    toon_sfs.run()

    N_toon = toon_sfs.normal()
    C_toon = toon_sfs.shading()

    C_lumo, N_lumo = lumoSFS(C0_32F, Lg, N0_32F, A_8U)
    C_wu, N_wu = wuSFS(C0_32F, Lg, N0_32F, A_8U)

    M_lumo = estimatedReflectance(C0_32F, Lg, N_lumo, A_8U)
    M_wu = estimatedReflectance(C0_32F, Lg, N_wu, A_8U)

    plot_grid.showImage(Lg_img, "Light direction")
    plot_grid.showImage(setAlpha(C0_32F, to32F(A_8U)), "Ground-truth")

    title = ""
    plot_grid.showImage(setAlpha(C_lumo, to32F(A_8U)), "Lumo")
    #plot_grid.showColorMap(C_error_lumo, title, v_min=0, v_max=0.1, with_colorbar=True)
    plot_grid.showImage(setAlpha(C_wu, to32F(A_8U)), "Lambert assumption")
    #plot_grid.showColorMap(C_error_wu, title, v_min=0, v_max=0.1, with_colorbar=True)
    plot_grid.showImage(setAlpha(C_toon, to32F(A_8U)), "Our result")
    #plot_grid.showColorMap(C_error_toon, title, v_min=0, v_max=0.1, with_colorbar=True)

    for L in Ls:
        C1 = ColorMapShader(M_32F).diffuseShading(L, Ng_32F)

        C1_lumo = M_lumo.shading(LdotN(L,
                                       N_lumo).flatten()).reshape(C0_32F.shape)
        C1_wu = M_wu.shading(LdotN(L, N_wu).flatten()).reshape(C0_32F.shape)
        C1_toon = toon_sfs.relighting(L)

        plot_grid.showImage(lightSphere(L), "")

        plot_grid.showImage(setAlpha(C1, to32F(A_8U)), "")

        title = ""
        plot_grid.showImage(setAlpha(C1_lumo, to32F(A_8U)), "")
        #plot_grid.showColorMap(C_error_lumo, title, v_min=0, v_max=0.1, with_colorbar=True)
        plot_grid.showImage(setAlpha(C1_wu, to32F(A_8U)), "")
        #plot_grid.showColorMap(C_error_wu, title, v_min=0, v_max=0.1, with_colorbar=True)
        plot_grid.showImage(setAlpha(C1_toon, to32F(A_8U)), "")

    # showMaximize()
    file_path = shapeResultFile("Relighting",
                                "RelightingComparison",
                                file_ext=".png")
    fig.savefig(file_path, transparent=True)
def relightingVideo(shape_name="Ogre", cmap_id=3):
    num_methods = 3
    num_rows = 1
    num_cols = num_methods + 2

    num_lights = 120

    w = 10
    h = 5

    fig, axes = plt.subplots(figsize=(w, h))
    font_size = 15
    fig.subplots_adjust(left=0.02,
                        right=0.98,
                        top=0.96,
                        bottom=0.04,
                        hspace=0.15,
                        wspace=0.1)
    fig.suptitle("Shading Analysis", fontsize=font_size)

    plot_grid = SubplotGrid(num_rows, num_cols)

    Lg = normalizeVector(np.array([-0.2, 0.3, 0.5]))
    Lg_img = lightSphere(Lg)

    L1 = normalizeVector(np.array([0.5, 0.5, 0.6]))

    Ls = [
        normalizeVector(Lg * (1.0 - t) + t * L1)
        for t in np.linspace(0.0, 1.0, num_lights)
    ]
    # Ls = [normalizeVector(Lg + 1.0 * np.cos(t) * np.array([1, 0, 0]) + 1.0 * np.sin(t) * np.array([0, 1, 0])) for t in np.linspace(0.0, 1.0, num_lights) ]

    Ng_data = shapeFile(shape_name)
    Ng_data = loadNormal(Ng_data)
    Ng_32F, A_8U = Ng_data

    N0_file = shapeResultFile(result_name="InitialNormal",
                              data_name=shape_name)
    N0_data = loadNormal(N0_file)
    N0_32F, A_8U = N0_data
    A_8U = cv2.bilateralFilter(A_8U, 0, 5, 2)

    colormap_file = colorMapFile(cmap_id)
    M_32F = loadColorMap(colormap_file)
    C0_32F = ColorMapShader(M_32F).diffuseShading(Lg, Ng_32F)

    toon_sfs = ToonSFS(Lg, C0_32F, A_8U)
    toon_sfs.setInitialNormal(N0_32F)
    toon_sfs.setNumIterations(iterations=100)
    toon_sfs.setWeights(w_lap=0.2)
    toon_sfs.run()

    N_toon = toon_sfs.normal()
    C_toon = toon_sfs.shading()

    C_lumo, N_lumo = lumoSFS(C0_32F, Lg, N0_32F, A_8U)
    C_wu, N_wu = wuSFS(C0_32F, Lg, N0_32F, A_8U)

    M_lumo = estimatedReflectance(C0_32F, Lg, N_lumo, A_8U)
    M_wu = estimatedReflectance(C0_32F, Lg, N_wu, A_8U)

    plot_grid.showImage(Lg_img, "Light direction")
    plot_grid.showImage(setAlpha(C0_32F, to32F(A_8U)), "Ground-truth")

    title = ""
    plot_grid.showImage(setAlpha(C_lumo, to32F(A_8U)), "Lumo")
    #plot_grid.showColorMap(C_error_lumo, title, v_min=0, v_max=0.1, with_colorbar=True)
    plot_grid.showImage(setAlpha(C_wu, to32F(A_8U)), "Lambert assumption")
    #plot_grid.showColorMap(C_error_wu, title, v_min=0, v_max=0.1, with_colorbar=True)
    plot_grid.showImage(setAlpha(C_toon, to32F(A_8U)), "Our result")
    #plot_grid.showColorMap(C_error_toon, title, v_min=0, v_max=0.1, with_colorbar=True)

    images = []

    for i in xrange(48):
        images.append(figure2numpy(fig))

    for li, L in enumerate(Ls):
        print li
        fig.clear()
        fig.suptitle("Relighting", fontsize=font_size)
        plot_grid.setPlot(1, 1)

        C1 = ColorMapShader(M_32F).diffuseShading(L, Ng_32F)

        C1_lumo = M_lumo.shading(LdotN(L,
                                       N_lumo).flatten()).reshape(C0_32F.shape)
        C1_wu = M_wu.shading(LdotN(L, N_wu).flatten()).reshape(C0_32F.shape)
        C1_toon = toon_sfs.relighting(L)

        plot_grid.showImage(lightSphere(L), "Light direction")

        plot_grid.showImage(setAlpha(C1, to32F(A_8U)), "Ground-truth")

        title = ""
        plot_grid.showImage(setAlpha(C1_lumo, to32F(A_8U)), "Lumo")
        #plot_grid.showColorMap(C_error_lumo, title, v_min=0, v_max=0.1, with_colorbar=True)
        plot_grid.showImage(setAlpha(C1_wu, to32F(A_8U)), "Lambert assumption")
        #plot_grid.showColorMap(C_error_wu, title, v_min=0, v_max=0.1, with_colorbar=True)
        plot_grid.showImage(setAlpha(C1_toon, to32F(A_8U)), "Our result")

        images.append(figure2numpy(fig))

    file_path = shapeResultFile("Relighting",
                                "Relighting_%s_%s" % (shape_name, cmap_id),
                                file_ext=".wmv")
    saveVideo(file_path, images)
def materialShapeVariationFigure():
    target_colormaps = [23, 3, 12]
    #target_colormaps = [3, 17]
    colormap_files = [colorMapFile(cmap_id) for cmap_id in target_colormaps]

    target_shapes = ["Blob1", "ThreeBox"]
    shape_names = target_shapes
    #shape_names = shapeNames()[4:5]

    num_shapes = len(shape_names)
    num_colormaps = len(colormap_files)
    num_rows = num_colormaps
    num_cols = 6

    w = 20
    h = w * num_rows / num_cols

    fig, axes = plt.subplots(figsize=(w, h))
    font_size = 15
    fig.subplots_adjust(left=0.02,
                        right=0.98,
                        top=0.96,
                        bottom=0.02,
                        hspace=0.15,
                        wspace=0.1)
    fig.suptitle("", fontsize=font_size)

    plot_grid = SubplotGrid(num_rows, num_cols)

    L = normalizeVector(np.array([-0.4, 0.5, 0.6]))

    shape_name = "Blob1"

    Ng_data = shapeFile(shape_name)
    Ng_data = loadNormal(Ng_data)
    Ng_32F, A_8U = Ng_data

    N0_file = shapeResultFile(result_name="InitialNormal",
                              data_name=shape_name)
    N0_data = loadNormal(N0_file)
    N0_32F, A_8U = N0_data

    for mi, colormap_file in enumerate(colormap_files):
        M_32F = loadColorMap(colormap_file)
        C0_32F = ColorMapShader(M_32F).diffuseShading(L, Ng_32F)

        sfs_method = ToonSFS(L, C0_32F, A_8U)
        sfs_method.setInitialNormal(N0_32F)
        sfs_method.setNumIterations(iterations=40)
        sfs_method.setWeights(w_lap=5.0)
        sfs_method.run()

        N_32F = sfs_method.normal()
        C_32F = sfs_method.shading()
        #C_32F = cv2.bilateralFilter(C_32F, 0, 0.1, 3)
        C_error = sfs_method.shadingError()

        C_error[A_8U < 0.5 * np.max(A_8U)] = 0.0
        C_error = trim(C_error, A_8U)

        h, w = A_8U.shape
        N_error = angleErros(N_32F.reshape(-1, 3),
                             Ng_32F.reshape(-1, 3)).reshape(h, w)
        N_error[A_8U < 0.5 * np.max(A_8U)] = 0.0
        N_error = trim(N_error, A_8U)

        title = ""

        if mi == 0:
            title = "Ground-truth"
        plot_grid.showImage(setAlpha(C0_32F, to32F(A_8U)), title)

        title = ""
        if mi == 0:
            title = "Our result"
        plot_grid.showImage(setAlpha(C_32F, to32F(A_8U)), title)

        title = ""
        if mi == 0:
            title = "Error (shading)"
        plot_grid.showColorMap(C_error,
                               title,
                               v_min=0,
                               v_max=0.1,
                               with_colorbar=True)

        title = ""
        if mi == 0:
            title = "Ground-truth"
        plot_grid.showImage(normalToColor(Ng_32F, A_8U), title)

        title = ""
        if mi == 0:
            title = "Our result"
        plot_grid.showImage(normalToColor(N_32F, A_8U), title)

        title = ""
        if mi == 0:
            title = "Error (shape)"

        plot_grid.showColorMap(N_error,
                               title,
                               v_min=0,
                               v_max=50.0,
                               with_colorbar=True)

    #showMaximize()
    file_path = shapeResultFile("ShapeEstimation",
                                "MaterialShapeEvaluation",
                                file_ext=".pdf")
    fig.savefig(file_path, transparent=False)
def LambertShadingFigure():
    target_shapes = [
        "Sphere", "Cone", "Blob1", "Man", "Cone", "OctaFlower", "Pulley",
        "Grog", "Lucy", "Raptor"
    ]
    target_shapes = ["Blob1", "Pulley", "Lucy"]
    shape_names = target_shapes

    num_rows = len(shape_names)
    num_cols = 6

    w = 20
    h = w * num_rows / num_cols

    fig, axes = plt.subplots(figsize=(w, h))
    font_size = 15
    fig.subplots_adjust(left=0.02,
                        right=0.98,
                        top=0.96,
                        bottom=0.02,
                        hspace=0.15,
                        wspace=0.1)
    fig.suptitle("", fontsize=font_size)

    plot_grid = SubplotGrid(num_rows, num_cols)

    L = normalizeVector(np.array([-0.2, 0.3, 0.6]))

    for si, shape_name in enumerate(shape_names):
        Ng_data = shapeFile(shape_name)

        Ng_data = loadNormal(Ng_data)
        Ng_32F, A_8U = Ng_data

        N0_file = shapeResultFile(result_name="InitialNormal",
                                  data_name=shape_name)
        N0_data = loadNormal(N0_file)
        N0_32F, A_8U = N0_data

        C0_32F = LambertShader().diffuseShading(L, Ng_32F)

        sfs_method = ToonSFS(L, C0_32F, A_8U)
        sfs_method.setInitialNormal(N0_32F)
        sfs_method.setNumIterations(iterations=70)
        sfs_method.setWeights(w_lap=1.0)
        sfs_method.run()
        N_32F = sfs_method.normal()
        C_32F = sfs_method.shading()
        C_error = sfs_method.shadingError()
        C_error[A_8U < 0.5 * np.max(A_8U)] = 0.0
        C_error = trim(C_error, A_8U)

        h, w = A_8U.shape
        N_error = angleErros(N_32F.reshape(-1, 3),
                             Ng_32F.reshape(-1, 3)).reshape(h, w)
        N_error[A_8U < 0.5 * np.max(A_8U)] = 0.0
        N_error = trim(N_error, A_8U)

        title = ""
        if si == 0:
            title = "Ground-truth"
        plot_grid.showImage(setAlpha(C0_32F, to32F(A_8U)), title)

        title = ""
        if si == 0:
            title = "Our result"
        plot_grid.showImage(setAlpha(C_32F, to32F(A_8U)), title)

        title = ""
        if si == 0:
            title = "Error (shading)"
        plot_grid.showColorMap(C_error,
                               title,
                               v_min=0,
                               v_max=0.1,
                               with_colorbar=True)

        title = ""
        if si == 0:
            title = "Ground-truth"
        plot_grid.showImage(normalToColor(Ng_32F, A_8U), title)

        title = ""
        if si == 0:
            title = "Our result"
        plot_grid.showImage(normalToColor(N_32F, A_8U), title)

        title = ""
        if si == 0:
            title = "Error (shape)"

        plot_grid.showColorMap(N_error,
                               title,
                               v_min=0,
                               v_max=30.0,
                               with_colorbar=True)

    file_path = shapeResultFile("ShapeEstimation",
                                "LambertEstimationError",
                                file_ext=".pdf")
    fig.savefig(file_path, transparent=True)
def relightingVideo(shape_name="Ogre", cmap_id=3):
    num_methods = 3
    num_rows = 1
    num_cols = num_methods + 2

    num_lights = 120

    w = 10
    h = 5

    fig, axes = plt.subplots(figsize=(w, h))
    font_size = 15
    fig.subplots_adjust(left=0.02, right=0.98, top=0.96, bottom=0.04, hspace=0.15, wspace=0.1)
    fig.suptitle("Shading Analysis", fontsize=font_size)

    plot_grid = SubplotGrid(num_rows, num_cols)

    Lg = normalizeVector(np.array([-0.2, 0.3, 0.5]))
    Lg_img = lightSphere(Lg)

    L1 = normalizeVector(np.array([0.5, 0.5, 0.6]))

    Ls = [normalizeVector(Lg * (1.0 - t) + t * L1) for t in np.linspace(0.0, 1.0, num_lights) ]
    # Ls = [normalizeVector(Lg + 1.0 * np.cos(t) * np.array([1, 0, 0]) + 1.0 * np.sin(t) * np.array([0, 1, 0])) for t in np.linspace(0.0, 1.0, num_lights) ]

    Ng_data = shapeFile(shape_name)
    Ng_data = loadNormal(Ng_data)
    Ng_32F, A_8U = Ng_data

    N0_file = shapeResultFile(result_name="InitialNormal", data_name=shape_name)
    N0_data = loadNormal(N0_file)
    N0_32F, A_8U = N0_data
    A_8U = cv2.bilateralFilter(A_8U, 0, 5, 2)

    colormap_file = colorMapFile(cmap_id)
    M_32F = loadColorMap(colormap_file)
    C0_32F = ColorMapShader(M_32F).diffuseShading(Lg, Ng_32F)

    toon_sfs = ToonSFS(Lg, C0_32F, A_8U)
    toon_sfs.setInitialNormal(N0_32F)
    toon_sfs.setNumIterations(iterations=100)
    toon_sfs.setWeights(w_lap=0.2)
    toon_sfs.run()

    N_toon = toon_sfs.normal()
    C_toon = toon_sfs.shading()

    C_lumo, N_lumo = lumoSFS(C0_32F, Lg, N0_32F, A_8U)
    C_wu, N_wu = wuSFS(C0_32F, Lg, N0_32F, A_8U)

    M_lumo = estimatedReflectance(C0_32F, Lg, N_lumo, A_8U)
    M_wu = estimatedReflectance(C0_32F, Lg, N_wu, A_8U)

    plot_grid.showImage(Lg_img, "Light direction")
    plot_grid.showImage(setAlpha(C0_32F, to32F(A_8U)), "Ground-truth")

    title = ""
    plot_grid.showImage(setAlpha(C_lumo, to32F(A_8U)), "Lumo")
    #plot_grid.showColorMap(C_error_lumo, title, v_min=0, v_max=0.1, with_colorbar=True)
    plot_grid.showImage(setAlpha(C_wu, to32F(A_8U)), "Lambert assumption")
    #plot_grid.showColorMap(C_error_wu, title, v_min=0, v_max=0.1, with_colorbar=True)
    plot_grid.showImage(setAlpha(C_toon, to32F(A_8U)), "Our result")
    #plot_grid.showColorMap(C_error_toon, title, v_min=0, v_max=0.1, with_colorbar=True)

    images = []

    for i in xrange(48):
        images.append(figure2numpy(fig))

    for li, L in enumerate(Ls):
        print li
        fig.clear()
        fig.suptitle("Relighting", fontsize=font_size)
        plot_grid.setPlot(1, 1)

        C1 = ColorMapShader(M_32F).diffuseShading(L, Ng_32F)

        C1_lumo = M_lumo.shading(LdotN(L, N_lumo).flatten()).reshape(C0_32F.shape)
        C1_wu = M_wu.shading(LdotN(L, N_wu).flatten()).reshape(C0_32F.shape)
        C1_toon = toon_sfs.relighting(L)

        plot_grid.showImage(lightSphere(L), "Light direction")

        plot_grid.showImage(setAlpha(C1, to32F(A_8U)), "Ground-truth")

        title = ""
        plot_grid.showImage(setAlpha(C1_lumo, to32F(A_8U)), "Lumo")
    #plot_grid.showColorMap(C_error_lumo, title, v_min=0, v_max=0.1, with_colorbar=True)
        plot_grid.showImage(setAlpha(C1_wu, to32F(A_8U)), "Lambert assumption")
    #plot_grid.showColorMap(C_error_wu, title, v_min=0, v_max=0.1, with_colorbar=True)
        plot_grid.showImage(setAlpha(C1_toon, to32F(A_8U)), "Our result")

        images.append(figure2numpy(fig))

    file_path = shapeResultFile("Relighting", "Relighting_%s_%s" %(shape_name, cmap_id), file_ext=".wmv")
    saveVideo(file_path, images)
def relightingFigure(shape_name="Vase", cmap_id=3):
    num_methods = 3
    num_lights = 2
    num_rows = num_lights + 1
    num_cols = num_methods + 2

    w = 15
    h = w * num_rows / num_cols

    fig, axes = plt.subplots(figsize=(w, h))
    font_size = 15
    fig.subplots_adjust(left=0.02, right=0.98, top=0.96, bottom=0.04, hspace=0.15, wspace=0.1)
    fig.suptitle("", fontsize=font_size)

    plot_grid = SubplotGrid(num_rows, num_cols)

    Lg = normalizeVector(np.array([-0.2, 0.3, 0.5]))
    Lg_img = lightSphere(Lg)

    L1 = normalizeVector(np.array([0.0, 0.7, 0.6]))
    L2 = normalizeVector(np.array([0.3, 0.5, 0.6]))


    # Ls = [normalizeVector(Lg * (1.0 - t) + t * L1) for t in np.linspace(0.0, 1.0, num_lights) ]
    Ls = [L1, L2]

    Ng_data = shapeFile(shape_name)
    Ng_data = loadNormal(Ng_data)
    Ng_32F, A_8U = Ng_data

    N0_file = shapeResultFile(result_name="InitialNormal", data_name=shape_name)
    N0_data = loadNormal(N0_file)
    N0_32F, A_8U = N0_data
    A_8U = cv2.bilateralFilter(A_8U, 0, 5, 2)

    colormap_file = colorMapFile(cmap_id)
    M_32F = loadColorMap(colormap_file)
    C0_32F = ColorMapShader(M_32F).diffuseShading(Lg, Ng_32F)

    toon_sfs = ToonSFS(Lg, C0_32F, A_8U)
    toon_sfs.setInitialNormal(N0_32F)
    toon_sfs.setNumIterations(iterations=50)
    toon_sfs.setWeights(w_lap=0.2)
    toon_sfs.run()

    N_toon = toon_sfs.normal()
    C_toon = toon_sfs.shading()

    C_lumo, N_lumo = lumoSFS(C0_32F, Lg, N0_32F, A_8U)
    C_wu, N_wu = wuSFS(C0_32F, Lg, N0_32F, A_8U)

    M_lumo = estimatedReflectance(C0_32F, Lg, N_lumo, A_8U)
    M_wu = estimatedReflectance(C0_32F, Lg, N_wu, A_8U)

    plot_grid.showImage(Lg_img, "Light direction")
    plot_grid.showImage(setAlpha(C0_32F, to32F(A_8U)), "Ground-truth")

    title = ""
    plot_grid.showImage(setAlpha(C_lumo, to32F(A_8U)), "Lumo")
    #plot_grid.showColorMap(C_error_lumo, title, v_min=0, v_max=0.1, with_colorbar=True)
    plot_grid.showImage(setAlpha(C_wu, to32F(A_8U)), "Lambert assumption")
    #plot_grid.showColorMap(C_error_wu, title, v_min=0, v_max=0.1, with_colorbar=True)
    plot_grid.showImage(setAlpha(C_toon, to32F(A_8U)), "Our result")
    #plot_grid.showColorMap(C_error_toon, title, v_min=0, v_max=0.1, with_colorbar=True)

    for L in Ls:
        C1 = ColorMapShader(M_32F).diffuseShading(L, Ng_32F)

        C1_lumo = M_lumo.shading(LdotN(L, N_lumo).flatten()).reshape(C0_32F.shape)
        C1_wu = M_wu.shading(LdotN(L, N_wu).flatten()).reshape(C0_32F.shape)
        C1_toon = toon_sfs.relighting(L)

        plot_grid.showImage(lightSphere(L), "")

        plot_grid.showImage(setAlpha(C1, to32F(A_8U)), "")

        title = ""
        plot_grid.showImage(setAlpha(C1_lumo, to32F(A_8U)), "")
    #plot_grid.showColorMap(C_error_lumo, title, v_min=0, v_max=0.1, with_colorbar=True)
        plot_grid.showImage(setAlpha(C1_wu, to32F(A_8U)), "")
    #plot_grid.showColorMap(C_error_wu, title, v_min=0, v_max=0.1, with_colorbar=True)
        plot_grid.showImage(setAlpha(C1_toon, to32F(A_8U)), "")

    # showMaximize()
    file_path = shapeResultFile("Relighting", "RelightingComparison", file_ext=".png")
    fig.savefig(file_path, transparent=True)
def lightEstimationFigure():
    target_colormaps = [23, 0, 6, 22, 4, 12]
    target_shapes = ["Raptor", "Man", "Blob1", "OctaFlower", "Pulley", "Cone"]
    colormap_files = [colorMapFile(cmap_id) for cmap_id in target_colormaps]
    shape_names = target_shapes

    num_rows = len(shape_names) + 1
    num_cols = len(colormap_files) + 1

    w = 10
    h = w * num_rows / num_cols

    fig, axes = plt.subplots(figsize=(w, h))
    font_size = 15
    fig.subplots_adjust(left=0.02, right=0.98, top=0.98, bottom=0.02, hspace=0.05, wspace=0.05)
    fig.suptitle("", fontsize=font_size)

    plot_grid = SubplotGrid(num_rows, num_cols)

    Lg = normalizeVector(np.array([-0.2, 0.3, 0.6]))
    Lg_img = lightSphere(Lg)

    plot_grid.showImage(Lg_img, "")

    Ms = []

    for colormap_file in colormap_files:
        M_32F = loadColorMap(colormap_file)
        Cs_32F = colorMapSphere(Lg, M_32F)

        plot_grid.showImage(Cs_32F, "")

        Ms.append(M_32F)

    L_errors = np.zeros((num_rows, num_cols))

    for si, shape_name in enumerate(shape_names):
        Ng_data = shapeFile(shape_name)

        Ng_data = loadNormal(Ng_data)
        Ng_32F, A_8U = Ng_data

        N0_file = shapeResultFile(result_name="InitialNormal", data_name=shape_name)
        N0_data = loadNormal(N0_file)
        N0_32F, A_8U = N0_data

        plot_grid.showImage(normalToColor(Ng_32F, A_8U), "")

        for mi, M_32F in enumerate(Ms):
            C0_32F = ColorMapShader(M_32F).diffuseShading(Lg, Ng_32F)
            I_32F = luminance(C0_32F)

            L = lightEstimation(I_32F, N0_32F, A_8U)
            L_errors[si, mi] = angleError(Lg, L)

            L_img = lightSphereColorMap(L, v=L_errors[si, mi], v_min=0, v_max=40)

            plot_grid.showImage(L_img, "")

    L_error_min, L_error_max = np.min(L_errors), np.max(L_errors)

    file_path = shapeResultFile("LightEstimation", "LightEstimationError")
    fig.savefig(file_path, transparent=True)
def methodComparisonFigure(shape_name="ThreeBox", cmap_id=10):
    num_methods = 3
    num_rows = 3
    num_cols = 2 * num_methods + 1

    w = 20
    h = w * num_rows / num_cols

    fig, axes = plt.subplots(figsize=(w, h))
    font_size = 15
    fig.subplots_adjust(left=0.02, right=0.98, top=0.96, bottom=0.04, hspace=0.15, wspace=0.1)
    fig.suptitle("", fontsize=font_size)

    plot_grid = SubplotGrid(num_rows, num_cols)

    L = normalizeVector(np.array([-0.4, 0.5, 0.6]))

    Ng_data = shapeFile(shape_name)
    Ng_data = loadNormal(Ng_data)
    Ng_32F, A_8U = Ng_data

    N0_file = shapeResultFile(result_name="InitialNormal", data_name=shape_name)
    N0_data = loadNormal(N0_file)
    N0_32F, A_8U = N0_data
    A_8U = cv2.bilateralFilter(A_8U, 0, 5, 2)

    colormap_file = colorMapFile(cmap_id)
    M_32F = loadColorMap(colormap_file)
    C0_32F = ColorMapShader(M_32F).diffuseShading(L, Ng_32F)

    toon_sfs = ToonSFS(L, C0_32F, A_8U)
    toon_sfs.setInitialNormal(N0_32F)
    toon_sfs.setNumIterations(iterations=100)
    toon_sfs.setWeights(w_lap=0.1)
    toon_sfs.run()

    N_toon = toon_sfs.normal()
    C_toon = toon_sfs.shading()

    C_lumo, N_lumo = lumoSFS(C0_32F, L, N0_32F, A_8U)
    C_wu, N_wu = wuSFS(C0_32F, L, N0_32F, A_8U)

    C_error_toon, N_error_toon, I_error_toon = computeErrors(L, C0_32F, C_toon, Ng_32F, N_toon, A_8U)
    C_error_lumo, N_error_lumo, I_error_lumo = computeErrors(L, C0_32F, C_lumo, Ng_32F, N_lumo, A_8U)
    C_error_wu, N_error_wu, I_error_wu = computeErrors(L, C0_32F, C_wu, Ng_32F, N_wu, A_8U)

    plot_grid.showImage(setAlpha(C0_32F, to32F(A_8U)), "Ground-truth")

    title = ""
    plot_grid.showImage(setAlpha(C_lumo, to32F(A_8U)), "Lumo")
    plot_grid.showColorMap(C_error_lumo, title, v_min=0, v_max=0.1, with_colorbar=True)
    plot_grid.showImage(setAlpha(C_wu, to32F(A_8U)), "Lambert assumption")
    plot_grid.showColorMap(C_error_wu, title, v_min=0, v_max=0.1, with_colorbar=True)
    plot_grid.showImage(setAlpha(C_toon, to32F(A_8U)), "Our result")
    plot_grid.showColorMap(C_error_toon, title, v_min=0, v_max=0.1, with_colorbar=True)

    plot_grid.showImage(normalToColor(Ng_32F, A_8U), title)

    plot_grid.showImage(normalToColor(N_lumo, A_8U), title)
    plot_grid.showColorMap(N_error_lumo, title, v_min=0, v_max=50.0, with_colorbar=True)
    plot_grid.showImage(normalToColor(N_wu, A_8U), title)
    plot_grid.showColorMap(N_error_wu, title, v_min=0, v_max=50.0, with_colorbar=True)
    plot_grid.showImage(normalToColor(N_toon, A_8U), title)
    plot_grid.showColorMap(N_error_toon, title, v_min=0, v_max=50.0, with_colorbar=True)

    plot_grid.showImage(computeIllumination(L, Ng_32F, A_8U), title)

    plot_grid.showImage(computeIllumination(L, N_lumo, A_8U), title)
    plot_grid.showColorMap(I_error_lumo, title, v_min=0, v_max=0.2, with_colorbar=True)
    plot_grid.showImage(computeIllumination(L, N_wu, A_8U), title)
    plot_grid.showColorMap(I_error_wu, title, v_min=0, v_max=0.2, with_colorbar=True)
    plot_grid.showImage(computeIllumination(L, N_toon, A_8U), title)
    plot_grid.showColorMap(I_error_toon, title, v_min=0, v_max=0.2, with_colorbar=True)

    # showMaximize()
    file_path = shapeResultFile("ShapeEstimation", "Comparison_%s_%s" %(shape_name, cmap_id), file_ext=".png")
    fig.savefig(file_path, transparent=True)
def LambertShadingFigure():
    target_shapes = ["Sphere", "Cone", "Blob1", "Man", "Cone", "OctaFlower", "Pulley", "Grog", "Lucy", "Raptor"]
    target_shapes = ["Blob1", "Pulley", "Lucy"]
    shape_names = target_shapes

    num_rows = len(shape_names)
    num_cols = 6

    w = 20
    h = w * num_rows / num_cols

    fig, axes = plt.subplots(figsize=(w, h))
    font_size = 15
    fig.subplots_adjust(left=0.02, right=0.98, top=0.96, bottom=0.02, hspace=0.15, wspace=0.1)
    fig.suptitle("", fontsize=font_size)

    plot_grid = SubplotGrid(num_rows, num_cols)

    L = normalizeVector(np.array([-0.2, 0.3, 0.6]))

    for si, shape_name in enumerate(shape_names):
        Ng_data = shapeFile(shape_name)

        Ng_data = loadNormal(Ng_data)
        Ng_32F, A_8U = Ng_data

        N0_file = shapeResultFile(result_name="InitialNormal", data_name=shape_name)
        N0_data = loadNormal(N0_file)
        N0_32F, A_8U = N0_data

        C0_32F = LambertShader().diffuseShading(L, Ng_32F)

        sfs_method = ToonSFS(L, C0_32F, A_8U)
        sfs_method.setInitialNormal(N0_32F)
        sfs_method.setNumIterations(iterations=70)
        sfs_method.setWeights(w_lap=1.0)
        sfs_method.run()
        N_32F = sfs_method.normal()
        C_32F = sfs_method.shading()
        C_error = sfs_method.shadingError()
        C_error[A_8U < 0.5 * np.max(A_8U)] = 0.0
        C_error = trim(C_error, A_8U)

        h, w = A_8U.shape
        N_error = angleErros(N_32F.reshape(-1, 3), Ng_32F.reshape(-1, 3)).reshape(h, w)
        N_error[A_8U < 0.5 * np.max(A_8U)] = 0.0
        N_error = trim(N_error, A_8U)

        title = ""
        if si == 0:
            title =  "Ground-truth"
        plot_grid.showImage(setAlpha(C0_32F, to32F(A_8U)), title)

        title = ""
        if si == 0:
            title =  "Our result"
        plot_grid.showImage(setAlpha(C_32F, to32F(A_8U)), title)

        title = ""
        if si == 0:
            title = "Error (shading)"
        plot_grid.showColorMap(C_error, title, v_min=0, v_max=0.1, with_colorbar=True)

        title = ""
        if si == 0:
            title =  "Ground-truth"
        plot_grid.showImage(normalToColor(Ng_32F, A_8U), title)

        title = ""
        if si == 0:
            title = "Our result"
        plot_grid.showImage(normalToColor(N_32F, A_8U), title)

        title = ""
        if si == 0:
            title = "Error (shape)"

        plot_grid.showColorMap(N_error, title, v_min=0, v_max=30.0, with_colorbar=True)

    file_path = shapeResultFile("ShapeEstimation", "LambertEstimationError", file_ext=".pdf")
    fig.savefig(file_path, transparent=True)
def materialShapeVariationFigure():
    target_colormaps = [23, 3, 12]
    #target_colormaps = [3, 17]
    colormap_files = [colorMapFile(cmap_id) for cmap_id in target_colormaps]

    target_shapes = ["Blob1", "ThreeBox"]
    shape_names = target_shapes
    #shape_names = shapeNames()[4:5]

    num_shapes = len(shape_names)
    num_colormaps = len(colormap_files)
    num_rows = num_colormaps
    num_cols = 6

    w = 20
    h = w * num_rows / num_cols

    fig, axes = plt.subplots(figsize=(w, h))
    font_size = 15
    fig.subplots_adjust(left=0.02, right=0.98, top=0.96, bottom=0.02, hspace=0.15, wspace=0.1)
    fig.suptitle("", fontsize=font_size)

    plot_grid = SubplotGrid(num_rows, num_cols)

    L = normalizeVector(np.array([-0.4, 0.5, 0.6]))

    shape_name = "Blob1"

    Ng_data = shapeFile(shape_name)
    Ng_data = loadNormal(Ng_data)
    Ng_32F, A_8U = Ng_data

    N0_file = shapeResultFile(result_name="InitialNormal", data_name=shape_name)
    N0_data = loadNormal(N0_file)
    N0_32F, A_8U = N0_data

    for mi, colormap_file in enumerate(colormap_files):
        M_32F = loadColorMap(colormap_file)
        C0_32F = ColorMapShader(M_32F).diffuseShading(L, Ng_32F)

        sfs_method = ToonSFS(L, C0_32F, A_8U)
        sfs_method.setInitialNormal(N0_32F)
        sfs_method.setNumIterations(iterations=40)
        sfs_method.setWeights(w_lap=5.0)
        sfs_method.run()

        N_32F = sfs_method.normal()
        C_32F = sfs_method.shading()
            #C_32F = cv2.bilateralFilter(C_32F, 0, 0.1, 3)
        C_error = sfs_method.shadingError()

        C_error[A_8U < 0.5 * np.max(A_8U)] = 0.0
        C_error = trim(C_error, A_8U)

        h, w = A_8U.shape
        N_error = angleErros(N_32F.reshape(-1, 3), Ng_32F.reshape(-1, 3)).reshape(h, w)
        N_error[A_8U < 0.5 * np.max(A_8U)] = 0.0
        N_error = trim(N_error, A_8U)

        title = ""

        if mi == 0:
            title =  "Ground-truth"
        plot_grid.showImage(setAlpha(C0_32F, to32F(A_8U)), title)

        title = ""
        if mi == 0:
            title =  "Our result"
        plot_grid.showImage(setAlpha(C_32F, to32F(A_8U)), title)

        title = ""
        if mi == 0:
            title = "Error (shading)"
        plot_grid.showColorMap(C_error, title, v_min=0, v_max=0.1, with_colorbar=True)

        title = ""
        if mi == 0:
            title =  "Ground-truth"
        plot_grid.showImage(normalToColor(Ng_32F, A_8U), title)

        title = ""
        if mi == 0:
            title = "Our result"
        plot_grid.showImage(normalToColor(N_32F, A_8U), title)

        title = ""
        if mi == 0:
            title = "Error (shape)"

        plot_grid.showColorMap(N_error, title, v_min=0, v_max=50.0, with_colorbar=True)

    #showMaximize()
    file_path = shapeResultFile("ShapeEstimation", "MaterialShapeEvaluation", file_ext=".pdf")
    fig.savefig(file_path, transparent=False)