def do_process(teffs, loggs, ebvs, zs, rvs, index, arr):
     output = np.zeros((len(responses) + 1, len(teffs)))
     c0 = time.time()
     N = len(teffs)
     for i, (teff, logg, ebv, z, rv,
             ind) in enumerate(zip(teffs, loggs, ebvs, zs, rvs, index)):
         if i % 100 == 0:
             dt = time.time() - c0
             print("ETA", index[0], (N - i) / 100. * dt / 3600., 'hr')
             c0 = time.time()
         #-- get model SED and absolute luminosity
         model.set_defaults(z=z)
         wave, flux = model.get_table(teff, logg)
         Labs = model.luminosity(wave, flux)
         flux_ = reddening.redden(flux,
                                  wave=wave,
                                  ebv=ebv,
                                  rtype='flux',
                                  law=law,
                                  Rv=rv)
         #-- calculate synthetic fluxes
         output[0, i] = ind
         output[1:, i] = model.synthetic_flux(wave,
                                              flux_,
                                              responses,
                                              units=units)
     arr.append(output)
Exemple #2
0
 def do_ebv_process(ebvs,arr,responses):
     logger.debug('EBV: %s-->%s (%d)'%(ebvs[0],ebvs[-1],len(ebvs)))
     for ebv in ebvs:
         flux_ = reddening.redden(flux,wave=wave,ebv=ebv,rtype='flux',law=law,Rv=Rv)
         #-- calculate synthetic fluxes
         synflux = model.synthetic_flux(wave,flux_,responses,units=units)
         arr.append([np.concatenate(([ebv],synflux))])
     logger.debug("Finished EBV process (len(arr)=%d)"%(len(arr)))
 def do_process(teffs,loggs,ebvs,zs,rvs,index,arr):
     output = np.zeros((len(responses)+1,len(teffs)))
     c0 = time.time()
     N = len(teffs)
     for i,(teff,logg,ebv,z,rv,ind) in enumerate(zip(teffs,loggs,ebvs,zs,rvs,index)):
         if i%100==0:
             dt = time.time()-c0
             print "ETA",index[0],(N-i)/100.*dt/3600.,'hr'
             c0 = time.time()
         #-- get model SED and absolute luminosity
         model.set_defaults(z=z)
         wave,flux = model.get_table(teff,logg)
         Labs = model.luminosity(wave,flux)
         flux_ = reddening.redden(flux,wave=wave,ebv=ebv,rtype='flux',law=law,Rv=rv)
         #-- calculate synthetic fluxes
         output[0,i] = ind
         output[1:,i] = model.synthetic_flux(wave,flux_,responses,units=units)
     arr.append(output)
def get_table(teff=None,
              logg=None,
              ebv=None,
              vrad=None,
              star=None,
              wave_units='AA',
              flux_units='erg/cm2/s/AA/sr',
              **kwargs):
    """
    Retrieve the specific intensity of a model atmosphere.
    
    ebv is reddening
    vrad is radial velocity: positive is redshift, negative is blueshift (km/s!)
    
    extra kwargs are for reddening
    
    You get limb angles, wavelength and a table. The shape of the table is
    (N_wave,N_mu).
    
    WARNING: wave and flux units cannot be specificed for the moment.
        
    >>> mu,wave,table = get_table(10000,4.0)
    
    >>> p = pl.figure()
    >>> ax1 = pl.subplot(221)
    >>> p = pl.title('E(B-V)=0, vrad=0')
    >>> ax = pl.gca()
    >>> ax.set_color_cycle([pl.cm.spectral(i) for i in np.linspace(0,1,len(mu))])
    >>> p = pl.loglog(wave,table)
    >>> p = pl.xlim(700,15000)
    >>> p = pl.ylim(1e3,1e8)
    
    >>> mu,wave,table = get_table(10000,4.0,ebv=0.5)
    
    >>> p = pl.subplot(222,sharex=ax1,sharey=ax1)
    >>> p = pl.title('E(B-V)=0.5, vrad=0')
    >>> ax = pl.gca()
    >>> ax.set_color_cycle([pl.cm.spectral(i) for i in np.linspace(0,1,len(mu))])
    >>> p = pl.loglog(wave,table)
    >>> p = pl.xlim(700,15000)
    >>> p = pl.ylim(1e3,1e8)
    
    >>> mu,wave,table = get_table(10000,4.0,vrad=-1000.)
    
    >>> p = pl.subplot(223,sharex=ax1,sharey=ax1)
    >>> p = pl.title('E(B-V)=0., vrad=-10000.')
    >>> ax = pl.gca()
    >>> ax.set_color_cycle([pl.cm.spectral(i) for i in np.linspace(0,1,len(mu))])
    >>> p = pl.loglog(wave,table)
    >>> p = pl.xlim(700,15000)
    >>> p = pl.ylim(1e3,1e8)
    
    >>> mu,wave,table = get_table(10000,4.0,vrad=-1000.,ebv=0.5)
    
    >>> p = pl.subplot(224,sharex=ax1,sharey=ax1)
    >>> p = pl.title('E(B-V)=0.5, vrad=-10000.')
    >>> ax = pl.gca()
    >>> ax.set_color_cycle([pl.cm.spectral(i) for i in np.linspace(0,1,len(mu))])
    >>> p = pl.loglog(wave,table)
    >>> p = pl.xlim(700,15000)
    >>> p = pl.ylim(1e3,1e8)
    
    >>> mu,wave,table = get_table(10050,4.12)
    
    >>> p = pl.figure()
    >>> pl.gca().set_color_cycle([pl.cm.spectral(i) for i in np.linspace(0,1,len(mu))])
    >>> p = pl.loglog(wave,table)
    
    
    @param teff: effective temperature (K)
    @type teff: float
    @param logg: log surface gravity (cgs, dex)
    @type logg: float
    @param ebv: reddening (mag)
    @type ebv: float
    @param vrad: radial velocity (for doppler shifting) (km/s)
    @type vrad: float
    @return: mu angles, wavelengths, table (Nwave x Nmu)
    @rtype: array, array, array
    """
    #-- get the FITS-file containing the tables
    gridfile = get_file(**kwargs)

    #-- read the file:
    ff = pyfits.open(gridfile)

    teff = float(teff)
    logg = float(logg)

    #-- if we have a grid model, no need for interpolation
    try:
        #-- extenstion name as in fits files prepared by Steven
        mod_name = "T%05d_logg%01.02f" % (teff, logg)
        mod = ff[mod_name]
        mu = np.array(mod.columns.names[1:], float)
        table = np.array(mod.data.tolist())[:, 1:]
        wave = mod.data.field('wavelength')
        logger.debug('Model LD taken directly from file (%s)' %
                     (os.path.basename(gridfile)))
    except KeyError:
        mu, wave, teffs, loggs, flux, flux_grid = get_grid_mesh(**kwargs)
        logger.debug('Model LD interpolated from grid %s (%s)' %
                     (os.path.basename(gridfile), kwargs))
        wave = wave + 0.
        table = flux_grid(np.log10(teff), logg) + 0.

    ff.close()

    #-- velocity shift if necessary
    if vrad is not None and vrad != 0:
        cc = constants.cc / 1000.  #speed of light in km/s
        for i in range(len(mu)):
            flux_shift = tools.doppler_shift(wave, vrad, flux=table[:, i])
            table[:, i] = flux_shift - 5. * vrad / cc * table[:, i]

    #-- redden if necessary
    if ebv is not None and ebv > 0:
        for i in range(len(mu)):
            table[:, i] = reddening.redden(table[:, i],
                                           wave=wave,
                                           ebv=ebv,
                                           rtype='flux',
                                           **kwargs)

    #-- that's it!
    return mu, wave, table
def get_table(
    teff=None, logg=None, ebv=None, vrad=None, star=None, wave_units="AA", flux_units="erg/cm2/s/AA/sr", **kwargs
):
    """
    Retrieve the specific intensity of a model atmosphere.
    
    ebv is reddening
    vrad is radial velocity: positive is redshift, negative is blueshift (km/s!)
    
    extra kwargs are for reddening
    
    You get limb angles, wavelength and a table. The shape of the table is
    (N_wave,N_mu).
    
    WARNING: wave and flux units cannot be specificed for the moment.
        
    >>> mu,wave,table = get_table(10000,4.0)
    
    >>> p = pl.figure()
    >>> ax1 = pl.subplot(221)
    >>> p = pl.title('E(B-V)=0, vrad=0')
    >>> ax = pl.gca()
    >>> ax.set_color_cycle([pl.cm.spectral(i) for i in np.linspace(0,1,len(mu))])
    >>> p = pl.loglog(wave,table)
    >>> p = pl.xlim(700,15000)
    >>> p = pl.ylim(1e3,1e8)
    
    >>> mu,wave,table = get_table(10000,4.0,ebv=0.5)
    
    >>> p = pl.subplot(222,sharex=ax1,sharey=ax1)
    >>> p = pl.title('E(B-V)=0.5, vrad=0')
    >>> ax = pl.gca()
    >>> ax.set_color_cycle([pl.cm.spectral(i) for i in np.linspace(0,1,len(mu))])
    >>> p = pl.loglog(wave,table)
    >>> p = pl.xlim(700,15000)
    >>> p = pl.ylim(1e3,1e8)
    
    >>> mu,wave,table = get_table(10000,4.0,vrad=-1000.)
    
    >>> p = pl.subplot(223,sharex=ax1,sharey=ax1)
    >>> p = pl.title('E(B-V)=0., vrad=-10000.')
    >>> ax = pl.gca()
    >>> ax.set_color_cycle([pl.cm.spectral(i) for i in np.linspace(0,1,len(mu))])
    >>> p = pl.loglog(wave,table)
    >>> p = pl.xlim(700,15000)
    >>> p = pl.ylim(1e3,1e8)
    
    >>> mu,wave,table = get_table(10000,4.0,vrad=-1000.,ebv=0.5)
    
    >>> p = pl.subplot(224,sharex=ax1,sharey=ax1)
    >>> p = pl.title('E(B-V)=0.5, vrad=-10000.')
    >>> ax = pl.gca()
    >>> ax.set_color_cycle([pl.cm.spectral(i) for i in np.linspace(0,1,len(mu))])
    >>> p = pl.loglog(wave,table)
    >>> p = pl.xlim(700,15000)
    >>> p = pl.ylim(1e3,1e8)
    
    >>> mu,wave,table = get_table(10050,4.12)
    
    >>> p = pl.figure()
    >>> pl.gca().set_color_cycle([pl.cm.spectral(i) for i in np.linspace(0,1,len(mu))])
    >>> p = pl.loglog(wave,table)
    
    
    @param teff: effective temperature (K)
    @type teff: float
    @param logg: log surface gravity (cgs, dex)
    @type logg: float
    @param ebv: reddening (mag)
    @type ebv: float
    @param vrad: radial velocity (for doppler shifting) (km/s)
    @type vrad: float
    @return: mu angles, wavelengths, table (Nwave x Nmu)
    @rtype: array, array, array
    """
    # -- get the FITS-file containing the tables
    gridfile = get_file(**kwargs)

    # -- read the file:
    ff = pyfits.open(gridfile)

    teff = float(teff)
    logg = float(logg)

    # -- if we have a grid model, no need for interpolation
    try:
        # -- extenstion name as in fits files prepared by Steven
        mod_name = "T%05d_logg%01.02f" % (teff, logg)
        mod = ff[mod_name]
        mu = np.array(mod.columns.names[1:], float)
        table = np.array(mod.data.tolist())[:, 1:]
        wave = mod.data.field("wavelength")
        logger.debug("Model LD taken directly from file (%s)" % (os.path.basename(gridfile)))
    except KeyError:
        mu, wave, teffs, loggs, flux, flux_grid = get_grid_mesh(**kwargs)
        logger.debug("Model LD interpolated from grid %s (%s)" % (os.path.basename(gridfile), kwargs))
        wave = wave + 0.0
        table = flux_grid(np.log10(teff), logg) + 0.0

    ff.close()

    # -- velocity shift if necessary
    if vrad is not None and vrad != 0:
        cc = constants.cc / 1000.0  # speed of light in km/s
        for i in range(len(mu)):
            flux_shift = tools.doppler_shift(wave, vrad, flux=table[:, i])
            table[:, i] = flux_shift - 5.0 * vrad / cc * table[:, i]

    # -- redden if necessary
    if ebv is not None and ebv > 0:
        for i in range(len(mu)):
            table[:, i] = reddening.redden(table[:, i], wave=wave, ebv=ebv, rtype="flux", **kwargs)

    # -- that's it!
    return mu, wave, table