def test_timeseries_edit(mp): scen = TimeSeries(mp, *test_args) df = {'region': ['World'] * 2, 'variable': ['Testing'] * 2, 'unit': ['???', '???'], 'year': [2010, 2020], 'value': [23.7, 23.8]} exp = pd.DataFrame.from_dict(df) obs = scen.timeseries() npt.assert_array_equal(exp[IDX_COLS], obs[IDX_COLS]) npt.assert_array_almost_equal(exp['value'], obs['value']) scen.check_out(timeseries_only=True) df = {'region': ['World'] * 2, 'variable': ['Testing'] * 2, 'unit': ['???', '???'], 'year': [2010, 2020], 'value': [23.7, 23.8]} df = pd.DataFrame.from_dict(df) scen.add_timeseries(df) scen.commit('testing of editing timeseries (same years)') scen.check_out(timeseries_only=True) df = {'region': ['World'] * 3, 'variable': ['Testing', 'Testing', 'Testing2'], 'unit': ['???', '???', '???'], 'year': [2020, 2030, 2030], 'value': [24.8, 24.9, 25.1]} df = pd.DataFrame.from_dict(df) scen.add_timeseries(df) scen.commit('testing of editing timeseries (other years)') mp.close_db() mp.open_db() scen = TimeSeries(mp, *test_args) obs = scen.timeseries().sort_values(by=['year']) df = df.append(exp.loc[0]).sort_values(by=['year']) npt.assert_array_equal(df[IDX_COLS], obs[IDX_COLS]) npt.assert_array_almost_equal(df['value'], obs['value'])
def test_new_subannual_timeseries_as_iamc(mp): mp.add_timeslice('Summer', 'Season', 1.0 / 4) scen = TimeSeries(mp, *test_args, version='new', annotation='fo') timeseries = DATA['timeseries'].pivot_table(values='value', index=IDX_COLS) scen.add_timeseries(timeseries) scen.commit('adding yearly data') # add subannual timeseries data ts_summer = timeseries.copy() ts_summer['subannual'] = 'Summer' scen.check_out() scen.add_timeseries(ts_summer) scen.commit('adding subannual data') # generate expected dataframe+ ts_year = timeseries.copy() ts_year['subannual'] = 'Year' exp = pd.concat([ts_year, ts_summer]).reset_index() exp['model'] = 'Douglas Adams' exp['scenario'] = 'Hitchhiker' # compare returned dataframe - default behaviour set to 'auto' assert_timeseries(scen, exp=exp[COLS_WITH_SUBANNUAL], cols=COLS_WITH_SUBANNUAL) # test behaviour of 'auto' explicitly assert_timeseries(scen, exp=exp[COLS_WITH_SUBANNUAL], cols=COLS_WITH_SUBANNUAL, subannual='auto') # test behaviour of 'True' explicitly assert_timeseries(scen, exp=exp[COLS_WITH_SUBANNUAL], cols=COLS_WITH_SUBANNUAL, subannual=True) # setting False raises an error because subannual data exists pytest.raises(ValueError, scen.timeseries, subannual=False)
def populate_test_platform(platform): """Populate `platform` with data for testing. Many of the tests in :mod:`ixmp.tests.core` depend on this set of data. The data consist of: - 3 versions of the Dantzig cannery/transport Scenario. - Version 2 is the default. - All have :obj:`HIST_DF` and :obj:`TS_DF` as time-series data. - 1 version of a TimeSeries with model name 'Douglas Adams' and scenario name 'Hitchhiker', containing 2 values. """ s1 = make_dantzig(platform, solve=True, quiet=True) s2 = s1.clone() s2.set_as_default() s2.clone() s4 = TimeSeries(platform, **models["h2g2"], version="new") s4.add_timeseries( pd.DataFrame.from_dict( dict( region="World", variable="Testing", unit="???", year=[2010, 2020], value=[23.7, 23.8], ))) s4.commit("") s4.set_as_default()
def test_new_timeseries_as_iamc(self, test_mp): # TODO rescue use of subannual= here scen = TimeSeries(test_mp, *models["h2g2"], version="new", annotation="fo") scen.add_timeseries(DATA["timeseries"].pivot_table(values="value", index=IDX_COLS)) scen.commit("importing a testing timeseries") # compare returned dataframe - default behaviour set to 'auto' assert_timeseries(scen) # test behaviour of 'auto' explicitly assert_timeseries(scen, subannual="auto") # test behaviour of 'False' explicitly assert_timeseries(scen, subannual=False) # test behaviour of 'True' explicitly exp = (DATA["timeseries"].pivot_table(values="value", index=IDX_COLS).reset_index()) exp["model"] = "Douglas Adams" exp["scenario"] = "Hitchhiker" exp["subannual"] = "Year" assert_timeseries(scen, exp=exp, cols=COLS_WITH_SUBANNUAL, subannual=True)
def test_timeseries_edit(mp): scen = TimeSeries(mp, *test_args) df = { "region": ["World"] * 2, "variable": ["Testing"] * 2, "unit": ["???", "???"], "year": [2010, 2020], "value": [23.7, 23.8], } exp = pd.DataFrame.from_dict(df) obs = scen.timeseries() npt.assert_array_equal(exp[IDX_COLS], obs[IDX_COLS]) npt.assert_array_almost_equal(exp["value"], obs["value"]) scen.check_out(timeseries_only=True) df = { "region": ["World"] * 2, "variable": ["Testing"] * 2, "unit": ["???", "???"], "year": [2010, 2020], "value": [23.7, 23.8], } df = pd.DataFrame.from_dict(df) scen.add_timeseries(df) scen.commit("testing of editing timeseries (same years)") scen.check_out(timeseries_only=True) df = { "region": ["World"] * 3, "variable": ["Testing", "Testing", "Testing2"], "unit": ["???", "???", "???"], "year": [2020, 2030, 2030], "value": [24.8, 24.9, 25.1], } df = pd.DataFrame.from_dict(df) scen.add_timeseries(df) scen.commit("testing of editing timeseries (other years)") mp.close_db() mp.open_db() scen = TimeSeries(mp, *test_args) obs = scen.timeseries().sort_values(by=["year"]) df = df.append(exp.loc[0]).sort_values(by=["year"]) npt.assert_array_equal(df[IDX_COLS], obs[IDX_COLS]) npt.assert_array_almost_equal(df["value"], obs["value"])
def test_new_timeseries_as_iamc(test_mp): scen = TimeSeries(test_mp, *test_args, version='new', annotation='fo') scen.add_timeseries(DATA['timeseries'].pivot_table(values='value', index=IDX_COLS)) scen.commit('importing a testing timeseries') # compare returned dataframe - default behaviour set to 'auto' assert_timeseries(scen) # test behaviour of 'auto' explicitly assert_timeseries(scen, subannual='auto') # test behaviour of 'False' explicitly assert_timeseries(scen, subannual=False) # test behaviour of 'True' explicitly exp = (DATA['timeseries'].pivot_table(values='value', index=IDX_COLS).reset_index()) exp['model'] = 'Douglas Adams' exp['scenario'] = 'Hitchhiker' exp['subannual'] = 'Year' assert_timeseries(scen, exp=exp, cols=COLS_WITH_SUBANNUAL, subannual=True)
def test_new_subannual_timeseries_as_iamc(self, mp): mp.add_timeslice("Summer", "Season", 1.0 / 4) scen = TimeSeries(mp, *models["h2g2"], version="new", annotation="fo") timeseries = DATA["timeseries"].pivot_table(values="value", index=IDX_COLS) scen.add_timeseries(timeseries) scen.commit("adding yearly data") # add subannual timeseries data ts_summer = timeseries.copy() ts_summer["subannual"] = "Summer" scen.check_out() scen.add_timeseries(ts_summer) scen.commit("adding subannual data") # generate expected dataframe+ ts_year = timeseries.copy() ts_year["subannual"] = "Year" exp = pd.concat([ts_year, ts_summer]).reset_index() exp["model"] = "Douglas Adams" exp["scenario"] = "Hitchhiker" # compare returned dataframe - default behaviour set to 'auto' assert_timeseries(scen, exp=exp[COLS_WITH_SUBANNUAL], cols=COLS_WITH_SUBANNUAL) # test behaviour of 'auto' explicitly assert_timeseries( scen, exp=exp[COLS_WITH_SUBANNUAL], cols=COLS_WITH_SUBANNUAL, subannual="auto", ) # test behaviour of 'True' explicitly assert_timeseries(scen, exp=exp[COLS_WITH_SUBANNUAL], cols=COLS_WITH_SUBANNUAL, subannual=True) # setting False raises an error because subannual data exists pytest.raises(ValueError, scen.timeseries, subannual=False)
def test_new_timeseries_as_year_value(test_mp): scen = TimeSeries(test_mp, *test_args, version='new', annotation='fo') scen.add_timeseries(DATA['timeseries']) scen.commit('importing a testing timeseries') assert_timeseries(scen)
def prepare_scenario(mp, args_all): scen = TimeSeries(mp, *args_all, version='new', annotation='nk') scen.add_timeseries(DATA[2010]) scen.commit('updating timeseries in IAMC format') scen = TimeSeries(mp, *args_all) return scen
def test_new_timeseries_as_year_value(test_mp): scen = TimeSeries(test_mp, *test_args, version="new", annotation="fo") scen.add_timeseries(DATA["timeseries"]) scen.commit("importing a testing timeseries") assert_timeseries(scen)