Exemple #1
0
def svd_jvp_rule(primals, tangents, full_matrices, compute_uv):
    A, = primals
    dA, = tangents
    s, U, Vt = svd_p.bind(A, full_matrices=False, compute_uv=True)

    if compute_uv and full_matrices:
        # TODO: implement full matrices case, documented here: https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
        raise NotImplementedError(
            "Singular value decomposition JVP not implemented for full matrices"
        )

    k = s.shape[-1]
    Ut, V = _H(U), _H(Vt)
    s_dim = s[..., None, :]
    dS = np.matmul(np.matmul(Ut, dA), V)
    ds = np.real(np.diagonal(dS, 0, -2, -1))
    F = 1 / (np.square(s_dim) - np.square(_T(s_dim)) +
             np.eye(k, dtype=A.dtype))
    F = F - np.eye(k, dtype=A.dtype)
    dSS = s_dim * dS
    SdS = _T(s_dim) * dS
    dU = np.matmul(U, F * (dSS + _T(dSS)))
    dV = np.matmul(V, F * (SdS + _T(SdS)))

    m, n = A.shape[-2:]
    if m > n:
        dU = dU + np.matmul(
            np.eye(m, dtype=A.dtype) - np.matmul(U, Ut), np.matmul(dA,
                                                                   V)) / s_dim
    if n > m:
        dV = dV + np.matmul(
            np.eye(n, dtype=A.dtype) - np.matmul(V, Vt), np.matmul(_H(dA),
                                                                   U)) / s_dim
    return (s, U, Vt), (ds, dU, _T(dV))
Exemple #2
0
def svd_jvp_rule(primals, tangents, full_matrices, compute_uv):
    if full_matrices:
        #TODO: implement full matrices case, documented here: https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
        raise NotImplementedError(
            "Singular value decomposition JVP not implemented for full matrices"
        )

    A, = primals
    dA, = tangents
    s, U, Vt = svd_p.bind(A, full_matrices=False, compute_uv=True)

    k = s.shape[-1]
    Ut, V = np.conj(U).T, np.conj(Vt).T
    s_dim = s[..., None, :]
    dS = np.dot(np.dot(Ut, dA), V)
    ds = np.real(np.diag(dS))
    F = 1 / (np.square(s_dim) - np.square(s_dim.T) + np.eye(k)) - np.eye(k)
    dSS = s_dim * dS
    SdS = s_dim.T * dS
    dU = np.dot(U, F * (dSS + dSS.T))
    dV = np.dot(V, F * (SdS + SdS.T))

    m, n = A.shape[-2], A.shape[-1]
    if m > n:
        dU = dU + np.dot(np.eye(m) - np.dot(U, Ut), np.dot(dA, V)) / s_dim
    if n > m:
        dV = dV + np.dot(np.eye(n) - np.dot(V, Vt), np.dot(np.conj(dA).T,
                                                           U)) / s_dim
    return core.pack((s, U, Vt)), core.pack((ds, dU, dV.T))
Exemple #3
0
def _lu_jvp_rule(primals, tangents):
    a, = primals
    a_dot, = tangents
    lu, pivots = lu_p.bind(a)

    if a_dot is ad_util.zero:
        return (core.pack(
            (lu, pivots)), ad.TangentTuple((ad_util.zero, ad_util.zero)))

    a_shape = np.shape(a)
    m, n = a_shape[-2:]
    dtype = lax.dtype(a)
    k = min(m, n)

    permutation = lu_pivots_to_permutation(pivots, m)
    batch_dims = a_shape[:-2]
    iotas = np.ix_(*(lax.iota(np.int32, b) for b in batch_dims + (1, )))
    x = a_dot[iotas[:-1] + (permutation, slice(None))]

    # Differentiation of Matrix Functionals Using Triangular Factorization
    # F. R. De Hoog, R. S. Anderssen, and M. A. Lukas
    #
    #     LU = A
    # ==> L'U + LU' = A'
    # ==> inv(L) . L' + U' . inv(U) = inv(L) A' inv(U)
    # ==> L' = L . tril(inv(L) . A' . inv(U), -1)
    #     U' = triu(inv(L) . A' . inv(U)) . U

    ndims = len(a_shape)
    l_padding = [(0, 0, 0)] * ndims
    l_padding[-1] = (0, m - k, 0)
    zero = np._constant_like(lu, 0)
    l = lax.pad(np.tril(lu[..., :, :k], -1), zero, l_padding)
    l = l + np.eye(m, m, dtype=dtype)

    u_eye = lax.pad(np.eye(n - k, n - k, dtype=dtype), zero,
                    ((k, 0, 0), (k, 0, 0)))
    u_padding = [(0, 0, 0)] * ndims
    u_padding[-2] = (0, n - k, 0)
    u = lax.pad(np.triu(lu[..., :k, :]), zero, u_padding) + u_eye

    la = triangular_solve(l,
                          x,
                          left_side=True,
                          transpose_a=False,
                          lower=True,
                          unit_diagonal=True)
    lau = triangular_solve(u,
                           la,
                           left_side=False,
                           transpose_a=False,
                           lower=False)

    l_dot = np.matmul(l, np.tril(lau, -1))
    u_dot = np.matmul(np.triu(lau), u)
    lu_dot = l_dot + u_dot
    return (lu, pivots), (lu_dot, ad_util.zero)
Exemple #4
0
def lu_jvp_rule(primals, tangents):
    a, = primals
    a_dot, = tangents
    lu, pivots = lu_p.bind(a)

    a_shape = np.shape(a)
    m, n = a_shape[-2:]
    dtype = lax._dtype(a)
    k = min(m, n)

    # TODO(phawkins): use a gather rather than a matrix multiplication here.
    permutation = lu_pivots_to_permutation(pivots, m)
    p = np.array(permutation[:, None] == np.arange(m), dtype=dtype)
    x = np.matmul(p, a_dot)

    # Differentiation of Matrix Functionals Using Triangular Factorization
    # F. R. De Hoog, R. S. Anderssen, and M. A. Lukas
    #
    #     LU = A
    # ==> L'U + LU' = A'
    # ==> inv(L) . L' + U' . inv(U) = inv(L) A' inv(U)
    # ==> L' = L . tril(inv(L) . A' . inv(U), -1)
    #     U' = triu(inv(L) . A' . inv(U)) . U

    ndims = len(a_shape)
    l_padding = [(0, 0, 0)] * ndims
    l_padding[-1] = (0, m - k, 0)
    zero = np._constant_like(lu, 0)
    l = lax.pad(np.tril(lu[..., :, :k], -1), zero, l_padding)
    l = l + np.eye(m, m, dtype=dtype)

    u_eye = lax.pad(np.eye(n - k, n - k, dtype=dtype), zero,
                    ((k, 0, 0), (k, 0, 0)))
    u_padding = [(0, 0, 0)] * ndims
    u_padding[-2] = (0, n - k, 0)
    u = lax.pad(np.triu(lu[..., :k, :]), zero, u_padding) + u_eye

    la = triangular_solve(l, x, left_side=True, transpose_a=False, lower=True)
    lau = triangular_solve(u,
                           la,
                           left_side=False,
                           transpose_a=False,
                           lower=False)

    l_dot = np.matmul(l, np.tril(lau, -1))
    u_dot = np.matmul(np.triu(lau), u)
    lu_dot = l_dot + u_dot
    return core.pack((lu, pivots)), ad.TangentTuple((lu_dot, ad_util.zero))
Exemple #5
0
def eigh_jvp_rule(primals, tangents, lower):
    # Derivative for eigh in the simplest case of distinct eigenvalues.
    # This is classic nondegenerate perurbation theory, but also see
    # https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
    # The general solution treating the case of degenerate eigenvalues is
    # considerably more complicated. Ambitious readers may refer to the general
    # methods below or refer to degenerate perturbation theory in physics.
    # https://www.win.tue.nl/analysis/reports/rana06-33.pdf and
    # https://people.orie.cornell.edu/aslewis/publications/99-clarke.pdf
    a, = primals
    a_dot, = tangents

    v, w = eigh_p.bind(symmetrize(a), lower=lower)

    # for complex numbers we need eigenvalues to be full dtype of v, a:
    w = w.astype(a.dtype)
    eye_n = np.eye(a.shape[-1], dtype=a.dtype)
    # carefully build reciprocal delta-eigenvalue matrix, avoiding NaNs.
    Fmat = np.reciprocal(eye_n + w[..., np.newaxis, :] -
                         w[..., np.newaxis]) - eye_n
    # eigh impl doesn't support batch dims, but future-proof the grad.
    dot = partial(lax.dot if a.ndim == 2 else lax.batch_matmul,
                  precision=lax.Precision.HIGHEST)
    vdag_adot_v = dot(dot(_H(v), a_dot), v)
    dv = dot(v, np.multiply(Fmat, vdag_adot_v))
    dw = np.diagonal(vdag_adot_v, axis1=-2, axis2=-1)
    return (v, w), (dv, dw)
Exemple #6
0
def cholesky_jvp_rule(primals, tangents):
  x, = primals
  sigma_dot, = tangents
  L = cholesky_p.bind(x)

  # Forward-mode rule from https://arxiv.org/pdf/1602.07527.pdf
  phi = lambda X: np.tril(X) / (1 + np.eye(X.shape[-1], dtype=X.dtype))
  tmp = triangular_solve(L, sigma_dot,
                         left_side=False, transpose_a=True, lower=True)
  L_dot = lax.batch_matmul(L, phi(triangular_solve(
      L, tmp, left_side=True, transpose_a=False, lower=True)))
  return L, L_dot
Exemple #7
0
def qr_jvp_rule(primals, tangents, full_matrices):
    # See j-towns.github.io/papers/qr-derivative.pdf for a terse derivation.
    x, = primals
    dx, = tangents
    q, r = qr_p.bind(x, full_matrices=False)
    *_, m, n = x.shape
    if full_matrices or m < n:
        raise NotImplementedError(
            "Unimplemented case of QR decomposition derivative")
    dx_rinv = triangular_solve(r, dx)  # Right side solve by default
    qt_dx_rinv = jnp.matmul(_H(q), dx_rinv)
    qt_dx_rinv_lower = jnp.tril(qt_dx_rinv, -1)
    do = qt_dx_rinv_lower - _H(qt_dx_rinv_lower)  # This is skew-symmetric
    # The following correction is necessary for complex inputs
    do = do + jnp.eye(n, dtype=do.dtype) * (qt_dx_rinv - jnp.real(qt_dx_rinv))
    dq = jnp.matmul(q, do - qt_dx_rinv) + dx_rinv
    dr = jnp.matmul(qt_dx_rinv - do, r)
    return (q, r), (dq, dr)
Exemple #8
0
 def phi(X):
     l = np.tril(X)
     return l / (np._constant_like(X, 1) +
                 np.eye(X.shape[-1], dtype=X.dtype))