def body_fn(i, permutation): j = swaps[..., i] iotas = np.ix_(*(lax.iota(np.int32, b) for b in batch_dims)) x = permutation[..., i] y = permutation[iotas + (j, )] permutation = ops.index_update(permutation, ops.index[..., i], y) return ops.index_update(permutation, ops.index[iotas + (j, )], x)
def _lu_pivots_body_fn(i, permutation_and_swaps): permutation, swaps = permutation_and_swaps batch_dims = swaps.shape[:-1] j = swaps[..., i] iotas = np.ix_(*(lax.iota(np.int32, b) for b in batch_dims)) x = permutation[..., i] y = permutation[iotas + (j, )] permutation = ops.index_update(permutation, ops.index[..., i], y) return ops.index_update(permutation, ops.index[iotas + (j, )], x), swaps
def _lu_jvp_rule(primals, tangents): a, = primals a_dot, = tangents lu, pivots = lu_p.bind(a) if a_dot is ad_util.zero: return (core.pack( (lu, pivots)), ad.TangentTuple((ad_util.zero, ad_util.zero))) a_shape = np.shape(a) m, n = a_shape[-2:] dtype = lax.dtype(a) k = min(m, n) permutation = lu_pivots_to_permutation(pivots, m) batch_dims = a_shape[:-2] iotas = np.ix_(*(lax.iota(np.int32, b) for b in batch_dims + (1, ))) x = a_dot[iotas[:-1] + (permutation, slice(None))] # Differentiation of Matrix Functionals Using Triangular Factorization # F. R. De Hoog, R. S. Anderssen, and M. A. Lukas # # LU = A # ==> L'U + LU' = A' # ==> inv(L) . L' + U' . inv(U) = inv(L) A' inv(U) # ==> L' = L . tril(inv(L) . A' . inv(U), -1) # U' = triu(inv(L) . A' . inv(U)) . U ndims = len(a_shape) l_padding = [(0, 0, 0)] * ndims l_padding[-1] = (0, m - k, 0) zero = np._constant_like(lu, 0) l = lax.pad(np.tril(lu[..., :, :k], -1), zero, l_padding) l = l + np.eye(m, m, dtype=dtype) u_eye = lax.pad(np.eye(n - k, n - k, dtype=dtype), zero, ((k, 0, 0), (k, 0, 0))) u_padding = [(0, 0, 0)] * ndims u_padding[-2] = (0, n - k, 0) u = lax.pad(np.triu(lu[..., :k, :]), zero, u_padding) + u_eye la = triangular_solve(l, x, left_side=True, transpose_a=False, lower=True, unit_diagonal=True) lau = triangular_solve(u, la, left_side=False, transpose_a=False, lower=False) l_dot = np.matmul(l, np.tril(lau, -1)) u_dot = np.matmul(np.triu(lau), u) lu_dot = l_dot + u_dot return (lu, pivots), (lu_dot, ad_util.zero)