Exemple #1
0
def _lu_jvp_rule(primals, tangents):
    a, = primals
    a_dot, = tangents
    lu, pivots = lu_p.bind(a)

    if a_dot is ad_util.zero:
        return (core.pack(
            (lu, pivots)), ad.TangentTuple((ad_util.zero, ad_util.zero)))

    a_shape = np.shape(a)
    m, n = a_shape[-2:]
    dtype = lax.dtype(a)
    k = min(m, n)

    permutation = lu_pivots_to_permutation(pivots, m)
    batch_dims = a_shape[:-2]
    iotas = np.ix_(*(lax.iota(np.int32, b) for b in batch_dims + (1, )))
    x = a_dot[iotas[:-1] + (permutation, slice(None))]

    # Differentiation of Matrix Functionals Using Triangular Factorization
    # F. R. De Hoog, R. S. Anderssen, and M. A. Lukas
    #
    #     LU = A
    # ==> L'U + LU' = A'
    # ==> inv(L) . L' + U' . inv(U) = inv(L) A' inv(U)
    # ==> L' = L . tril(inv(L) . A' . inv(U), -1)
    #     U' = triu(inv(L) . A' . inv(U)) . U

    ndims = len(a_shape)
    l_padding = [(0, 0, 0)] * ndims
    l_padding[-1] = (0, m - k, 0)
    zero = np._constant_like(lu, 0)
    l = lax.pad(np.tril(lu[..., :, :k], -1), zero, l_padding)
    l = l + np.eye(m, m, dtype=dtype)

    u_eye = lax.pad(np.eye(n - k, n - k, dtype=dtype), zero,
                    ((k, 0, 0), (k, 0, 0)))
    u_padding = [(0, 0, 0)] * ndims
    u_padding[-2] = (0, n - k, 0)
    u = lax.pad(np.triu(lu[..., :k, :]), zero, u_padding) + u_eye

    la = triangular_solve(l,
                          x,
                          left_side=True,
                          transpose_a=False,
                          lower=True,
                          unit_diagonal=True)
    lau = triangular_solve(u,
                           la,
                           left_side=False,
                           transpose_a=False,
                           lower=False)

    l_dot = np.matmul(l, np.tril(lau, -1))
    u_dot = np.matmul(np.triu(lau), u)
    lu_dot = l_dot + u_dot
    return (lu, pivots), (lu_dot, ad_util.zero)
Exemple #2
0
def lu_jvp_rule(primals, tangents):
    a, = primals
    a_dot, = tangents
    lu, pivots = lu_p.bind(a)

    a_shape = np.shape(a)
    m, n = a_shape[-2:]
    dtype = lax._dtype(a)
    k = min(m, n)

    # TODO(phawkins): use a gather rather than a matrix multiplication here.
    permutation = lu_pivots_to_permutation(pivots, m)
    p = np.array(permutation[:, None] == np.arange(m), dtype=dtype)
    x = np.matmul(p, a_dot)

    # Differentiation of Matrix Functionals Using Triangular Factorization
    # F. R. De Hoog, R. S. Anderssen, and M. A. Lukas
    #
    #     LU = A
    # ==> L'U + LU' = A'
    # ==> inv(L) . L' + U' . inv(U) = inv(L) A' inv(U)
    # ==> L' = L . tril(inv(L) . A' . inv(U), -1)
    #     U' = triu(inv(L) . A' . inv(U)) . U

    ndims = len(a_shape)
    l_padding = [(0, 0, 0)] * ndims
    l_padding[-1] = (0, m - k, 0)
    zero = np._constant_like(lu, 0)
    l = lax.pad(np.tril(lu[..., :, :k], -1), zero, l_padding)
    l = l + np.eye(m, m, dtype=dtype)

    u_eye = lax.pad(np.eye(n - k, n - k, dtype=dtype), zero,
                    ((k, 0, 0), (k, 0, 0)))
    u_padding = [(0, 0, 0)] * ndims
    u_padding[-2] = (0, n - k, 0)
    u = lax.pad(np.triu(lu[..., :k, :]), zero, u_padding) + u_eye

    la = triangular_solve(l, x, left_side=True, transpose_a=False, lower=True)
    lau = triangular_solve(u,
                           la,
                           left_side=False,
                           transpose_a=False,
                           lower=False)

    l_dot = np.matmul(l, np.tril(lau, -1))
    u_dot = np.matmul(np.triu(lau), u)
    lu_dot = l_dot + u_dot
    return core.pack((lu, pivots)), ad.TangentTuple((lu_dot, ad_util.zero))
Exemple #3
0
def triangular_solve_jvp_rule_a(g_a, ans, a, b, left_side, lower, transpose_a,
                                conjugate_a, unit_diagonal):
    m, n = b.shape[-2:]
    k = 1 if unit_diagonal else 0
    g_a = np.tril(g_a, k=-k) if lower else np.triu(g_a, k=k)
    g_a = lax.neg(g_a)
    g_a = np.swapaxes(g_a, -1, -2) if transpose_a else g_a
    g_a = np.conj(g_a) if conjugate_a else g_a
    dot = partial(lax.dot if g_a.ndim == 2 else lax.batch_matmul,
                  precision=lax.Precision.HIGHEST)

    def a_inverse(rhs):
        return triangular_solve(a, rhs, left_side, lower, transpose_a,
                                conjugate_a, unit_diagonal)

    # triangular_solve is about the same cost as matrix multplication (~n^2 FLOPs
    # for matrix/vector inputs). Order these operations in whichever order is
    # cheaper.
    if left_side:
        assert g_a.shape[-2:] == a.shape[-2:] == (m, m) and ans.shape[-2:] == (
            m, n)
        if m > n:
            return a_inverse(dot(g_a, ans))  # A^{-1} (∂A X)
        else:
            return dot(a_inverse(g_a), ans)  # (A^{-1} ∂A) X
    else:
        assert g_a.shape[-2:] == a.shape[-2:] == (n, n) and ans.shape[-2:] == (
            m, n)
        if m < n:
            return a_inverse(dot(ans, g_a))  # (X ∂A) A^{-1}
        else:
            return dot(ans, a_inverse(g_a))  # X (∂A A^{-1})
Exemple #4
0
def triangular_solve_jvp_rule_a(g_a, ans, a, b, left_side, lower, transpose_a,
                                conjugate_a, unit_diagonal):
    k = 1 if unit_diagonal else 0
    g_a = np.tril(g_a, k=-k) if lower else np.triu(g_a, k=k)
    g_a = lax.neg(g_a)
    g_a = np.swapaxes(g_a, -1, -2) if transpose_a else g_a
    g_a = np.conj(g_a) if conjugate_a else g_a
    tmp = triangular_solve(a, g_a, left_side, lower, transpose_a, conjugate_a,
                           unit_diagonal)
    dot = lax.dot if g_a.ndim == 2 else lax.batch_matmul
    if left_side:
        return dot(tmp, ans)
    else:
        return dot(ans, tmp)
Exemple #5
0
def qr(x, full_matrices=True):
    q, r = qr_p.bind(x, full_matrices=full_matrices)
    return q, np.triu(r)