Exemple #1
0
    def init_fn(key, R, box, mass=f32(1.0), **kwargs):
        N, dim = R.shape

        _kT = kT if 'kT' not in kwargs else kwargs['kT']

        mass = quantity.canonicalize_mass(mass)
        V = jnp.sqrt(_kT / mass) * random.normal(key, R.shape, dtype=R.dtype)
        V = V - jnp.mean(V * mass, axis=0, keepdims=True) / mass
        KE = quantity.kinetic_energy(V, mass)

        # The box position is defined via pos = (1 / d) log V / V_0.
        zero = jnp.zeros((), dtype=R.dtype)
        one = jnp.ones((), dtype=R.dtype)
        box_position = zero
        box_velocity = zero
        box_mass = dim * (N + 1) * kT * barostat_kwargs['tau']**2 * one
        KE_box = quantity.kinetic_energy(box_velocity, box_mass)

        if jnp.isscalar(box) or box.ndim == 0:
            # TODO(schsam): This is necessary because of JAX issue #5849.
            box = jnp.eye(R.shape[-1]) * box

        return NPTNoseHooverState(R, V, force_fn(R, box=box, **kwargs), mass,
                                  box, box_position, box_velocity, box_mass,
                                  barostat.initialize(1, KE_box, _kT),
                                  thermostat.initialize(R.size, KE, _kT))  # pytype: disable=wrong-arg-count
Exemple #2
0
    def apply_fn(state, **kwargs):
        S = state
        _kT = kT if 'kT' not in kwargs else kwargs['kT']

        bc = barostat.update_mass(S.barostat, _kT)
        tc = thermostat.update_mass(S.thermostat, _kT)
        S = update_box_mass(S, _kT)

        V_b, bc = barostat.half_step(S.box_velocity, bc, _kT)
        V, tc = thermostat.half_step(S.velocity, tc, _kT)

        S = dataclasses.replace(S, velocity=V, box_velocity=V_b)
        S = inner_step(S, **kwargs)

        KE = quantity.kinetic_energy(S.velocity, S.mass)
        tc = dataclasses.replace(tc, kinetic_energy=KE)

        KE_box = quantity.kinetic_energy(S.box_velocity, S.box_mass)
        bc = dataclasses.replace(bc, kinetic_energy=KE_box)

        V, tc = thermostat.half_step(S.velocity, tc, _kT)
        V_b, bc = barostat.half_step(S.box_velocity, bc, _kT)

        S = dataclasses.replace(S,
                                thermostat=tc,
                                barostat=bc,
                                velocity=V,
                                box_velocity=V_b)

        return S
Exemple #3
0
    def test_nve_ensemble_time_dependence(self, spatial_dimension, dtype):
        key = random.PRNGKey(0)
        pos_key, center_key, vel_key, mass_key = random.split(key, 4)
        R = random.normal(pos_key, (PARTICLE_COUNT, spatial_dimension),
                          dtype=dtype)
        R0 = random.normal(center_key, (PARTICLE_COUNT, spatial_dimension),
                           dtype=dtype)
        mass = random.uniform(mass_key, (PARTICLE_COUNT, ),
                              minval=0.1,
                              maxval=5.0,
                              dtype=dtype)
        displacement, shift = space.free()

        E = energy.soft_sphere_pair(displacement)

        init_fn, apply_fn = simulate.nve(E, shift, 1e-3)
        apply_fn = jit(apply_fn)

        state = init_fn(vel_key, R, mass=mass)

        E_T = lambda state: \
            E(state.position) + quantity.kinetic_energy(state.velocity, state.mass)
        E_initial = E_T(state)

        for t in range(SHORT_DYNAMICS_STEPS):
            state = apply_fn(state, t=t * 1e-3)
            E_total = E_T(state)
            assert np.abs(E_total - E_initial) < E_initial * 0.01
            assert state.position.dtype == dtype
Exemple #4
0
def nvt_nose_hoover_invariant(energy_fn: Callable[..., Array],
                              state: NVTNoseHooverState, kT: float,
                              **kwargs) -> float:
    """The conserved quantity for the NVT ensemble with a Nose-Hoover thermostat.

  This function is normally used for debugging the Nose-Hoover thermostat.

  Arguments:
    energy_fn: The energy function of the Nose-Hoover system.
    state: The current state of the system.
    kT: The current goal temperature of the system.

  Returns:
    The Hamiltonian of the extended NVT dynamics.
  """
    PE = energy_fn(state.position, **kwargs)
    KE = quantity.kinetic_energy(state.velocity, state.mass)

    DOF = state.position.size
    E = PE + KE

    c = state.chain

    E += c.mass[0] * c.velocity[0]**2 / 2 + DOF * kT * c.position[0]
    for r, v, m in zip(c.position[1:], c.velocity[1:], c.mass[1:]):
        E += m * v**2 / 2 + kT * r
    return E
Exemple #5
0
    def test_nve_ensemble(self, spatial_dimension, dtype):
        key = random.PRNGKey(0)
        pos_key, center_key, vel_key, mass_key = random.split(key, 4)
        R = random.normal(pos_key, (PARTICLE_COUNT, spatial_dimension),
                          dtype=dtype)
        R0 = random.normal(center_key, (PARTICLE_COUNT, spatial_dimension),
                           dtype=dtype)
        mass = random.uniform(mass_key, (PARTICLE_COUNT, ),
                              minval=0.1,
                              maxval=5.0,
                              dtype=dtype)
        _, shift = space.free()

        E = lambda R, **kwargs: np.sum((R - R0)**2)

        init_fn, apply_fn = simulate.nve(E, shift, 1e-3)
        apply_fn = jit(apply_fn)

        state = init_fn(vel_key, R, mass=mass)

        E_T = lambda state: \
            E(state.position) + quantity.kinetic_energy(state.velocity, state.mass)
        E_initial = E_T(state)

        for _ in range(DYNAMICS_STEPS):
            state = apply_fn(state)
            E_total = E_T(state)
            assert np.abs(E_total - E_initial) < E_initial * 0.01
            assert state.position.dtype == dtype
Exemple #6
0
    def test_nve_jammed(self, spatial_dimension, dtype):
        key = random.PRNGKey(0)

        state = test_util.load_jammed_state('simulation_test_state.npy', dtype)
        displacement_fn, shift_fn = space.periodic(state.box[0, 0])

        E = energy.soft_sphere_pair(displacement_fn, state.species,
                                    state.sigma)

        init_fn, apply_fn = simulate.nve(E, shift_fn, 1e-3)
        apply_fn = jit(apply_fn)

        state = init_fn(key, state.real_position, kT=1e-3)

        E_T = lambda state: \
            E(state.position) + quantity.kinetic_energy(state.velocity, state.mass)
        E_initial = E_T(state) * np.ones((DYNAMICS_STEPS, ))

        def step_fn(i, state_and_energy):
            state, energy = state_and_energy
            state = apply_fn(state)
            energy = energy.at[i].set(E_T(state))
            return state, energy

        Es = np.zeros((DYNAMICS_STEPS, ))
        state, Es = lax.fori_loop(0, DYNAMICS_STEPS, step_fn, (state, Es))

        tol = 1e-3 if dtype is f32 else 1e-7
        self.assertEqual(state.position.dtype, dtype)
        self.assertAllClose(Es, E_initial, rtol=tol, atol=tol)
Exemple #7
0
    def test_nve_jammed_periodic_general(self, dtype, coords):
        key = random.PRNGKey(0)

        state = test_util.load_test_state('simulation_test_state.npy', dtype)
        displacement_fn, shift_fn = space.periodic_general(
            state.box, coords == 'fractional')

        E = energy.soft_sphere_pair(displacement_fn, state.species,
                                    state.sigma)

        init_fn, apply_fn = simulate.nve(E, shift_fn, 1e-3)
        apply_fn = jit(apply_fn)

        state = init_fn(key, getattr(state, coords + '_position'), kT=1e-3)

        E_T = lambda state: \
            E(state.position) + quantity.kinetic_energy(state.velocity, state.mass)
        E_initial = E_T(state) * np.ones((DYNAMICS_STEPS, ))

        def step_fn(i, state_and_energy):
            state, energy = state_and_energy
            state = apply_fn(state)
            energy = ops.index_update(energy, i, E_T(state))
            return state, energy

        Es = np.zeros((DYNAMICS_STEPS, ))
        state, Es = lax.fori_loop(0, DYNAMICS_STEPS, step_fn, (state, Es))

        tol = 1e-3 if dtype is f32 else 1e-7
        self.assertEqual(state.position.dtype, dtype)
        self.assertAllClose(Es, E_initial, rtol=tol, atol=tol)
Exemple #8
0
def nose_hoover_invariant(energy_fn: Callable[..., Array],
                          state: NVTNoseHooverState, kT: float,
                          **kwargs) -> float:
    """The conserved quantity for the Nose-Hoover thermostat.

  This function is normally used for debugging the Nose-Hoover thermostat.

  Arguments:
    energy_fn: The energy function of the Nose-Hoover system.
    state: The current state of the system.
    kT: The current goal temperature of the system.

  Returns:
    The Hamiltonian of the extended NVT dynamics. 
  """

    PE = energy_fn(state.position, **kwargs)
    KE = quantity.kinetic_energy(state.velocity, state.mass)

    DOF = state.position.size
    E = PE + KE

    E += state.v_xi[0]**2 * state.Q[0] * 0.5 + DOF * kT * state.xi[0]
    for xi, v_xi, Q in zip(state.xi[1:], state.v_xi[1:], state.Q[1:]):
        E += v_xi**2 * Q * 0.5 + kT * xi
    return E
Exemple #9
0
 def step_fn(i, state_energy_pressure):
     state, energy, pressure = state_energy_pressure
     state = apply_fn(state)
     energy = energy.at[i].set(invariant(state, P, kT))
     box = simulate.npt_box(state)
     KE = quantity.kinetic_energy(state.velocity, state.mass)
     p = pressure_fn(state.position, box, KE)
     pressure = pressure.at[i].set(p)
     return state, energy, pressure
Exemple #10
0
 def step_fn(i, state_energy_pressure):
     state, energy, pressure = state_energy_pressure
     state = apply_fn(state)
     energy = ops.index_update(energy, i, invariant(state, P, kT))
     box = simulate.npt_box(state)
     KE = quantity.kinetic_energy(state.velocity, state.mass)
     p = pressure_fn(state.position, box, KE)
     pressure = ops.index_update(pressure, i, p)
     return state, energy, pressure
Exemple #11
0
 def invariant(T, state):
     """The conserved quantity for Nose-Hoover thermostat."""
     accum = \
         E(state.position) + quantity.kinetic_energy(state.velocity, state.mass)
     DOF = spatial_dimension * PARTICLE_COUNT
     accum = accum + (state.v_xi[0]) ** 2 * state.Q[0] * 0.5 + \
         DOF * T * state.xi[0]
     for xi, v_xi, Q in zip(state.xi[1:], state.v_xi[1:], state.Q[1:]):
         accum = accum + v_xi**2 * Q * 0.5 + T * xi
     return accum
Exemple #12
0
    def init_fn(key, R, mass=f32(1.0), **kwargs):
        _kT = kT if 'kT' not in kwargs else kwargs['kT']

        mass = quantity.canonicalize_mass(mass)
        V = jnp.sqrt(_kT / mass) * random.normal(key, R.shape, dtype=R.dtype)
        V = V - jnp.mean(V * mass, axis=0, keepdims=True) / mass
        KE = quantity.kinetic_energy(V, mass)

        return NVTNoseHooverState(R, V, force_fn(R, **kwargs), mass,
                                  chain_fns.initialize(R.size, KE, _kT))  # pytype: disable=wrong-arg-count
Exemple #13
0
    def init_fun(key, R, mass=f32(1.0), T_initial=f32(1.0)):
        mass = quantity.canonicalize_mass(mass)
        V = np.sqrt(T_initial / mass) * random.normal(
            key, R.shape, dtype=R.dtype)
        V = V - np.mean(V, axis=0, keepdims=True)
        KE = quantity.kinetic_energy(V, mass)

        # Nose-Hoover parameters.
        xi = np.zeros(chain_length, R.dtype)
        v_xi = np.zeros(chain_length, R.dtype)

        DOF, = static_cast(R.shape[0] * R.shape[1])
        Q = T_initial * tau**f32(2) * np.ones(chain_length, dtype=R.dtype)
        Q = ops.index_update(Q, 0, Q[0] * DOF)

        return NVTNoseHooverState(R, V, mass, KE, xi, v_xi, Q)
Exemple #14
0
    def apply_fn(state, **kwargs):
        _kT = kT if 'kT' not in kwargs else kwargs['kT']

        chain = state.chain

        chain = chain_fns.update_mass(chain, _kT)

        v, chain = chain_fns.half_step(state.velocity, chain, _kT)
        state = dataclasses.replace(state, velocity=v)

        state = velocity_verlet(force_fn, shift_fn, dt, state, **kwargs)

        KE = quantity.kinetic_energy(state.velocity, state.mass)
        chain = dataclasses.replace(chain, kinetic_energy=KE)

        v, chain = chain_fns.half_step(state.velocity, chain, _kT)
        state = dataclasses.replace(state, velocity=v, chain=chain)

        return state
Exemple #15
0
    def init_fun(key, R, mass=f32(1.0), T_initial=None):
        if T_initial is None:
            T_initial = T_schedule(0.0)

        mass = quantity.canonicalize_mass(mass)
        V = np.sqrt(T_initial / mass) * random.normal(
            key, R.shape, dtype=R.dtype)
        V = V - np.mean(V, axis=0, keepdims=True)
        KE = quantity.kinetic_energy(V, mass)

        # Nose-Hoover parameters.
        xi = np.zeros(chain_length, R.dtype)
        v_xi = np.zeros(chain_length, R.dtype)

        # TODO(schsam): Really, it seems like Q should be set by the goal
        # temperature rather than the initial temperature.
        DOF, = static_cast(R.shape[0] * R.shape[1])
        Q = T_initial * tau**f32(2) * np.ones(chain_length, dtype=R.dtype)
        Q = ops.index_update(Q, 0, Q[0] * DOF)

        return NVTNoseHooverState(R, V, mass, KE, xi, v_xi, Q)  # pytype: disable=wrong-arg-count
Exemple #16
0
    def init_fn(key, R, mass=f32(1.0), **kwargs):
        _kT = kT if 'kT' not in kwargs else kwargs['kT']

        mass = quantity.canonicalize_mass(mass)
        V = np.sqrt(_kT / mass) * random.normal(key, R.shape, dtype=R.dtype)
        V = V - np.mean(V, axis=0, keepdims=True)
        KE = quantity.kinetic_energy(V, mass)

        # Nose-Hoover parameters.
        xi = np.zeros(chain_length, R.dtype)
        v_xi = np.zeros(chain_length, R.dtype)

        # TODO(schsam): Really, it seems like Q should be set by the goal
        # temperature rather than the initial temperature.
        DOF = f32(R.shape[0] * R.shape[1])
        Q = _kT * tau**f32(2) * np.ones(chain_length, dtype=R.dtype)
        Q = ops.index_update(Q, 0, Q[0] * DOF)

        F = force_fn(R, **kwargs)

        return NVTNoseHooverState(R, V, F, mass, KE, xi, v_xi, Q)  # pytype: disable=wrong-arg-count
Exemple #17
0
    def apply_fun(state, t=f32(0), **kwargs):
        T = T_schedule(t)

        R, V, mass, KE, xi, v_xi, Q = state

        DOF, = static_cast(R.shape[0] * R.shape[1])

        Q = T * tau**f32(2) * np.ones(chain_length, dtype=R.dtype)
        Q = ops.index_update(Q, 0, Q[0] * DOF)

        KE, V, xi, v_xi = step_chain(KE, V, xi, v_xi, Q, DOF, T)
        R = shift_fn(R, V * dt_2, t=t, **kwargs)

        F = force(R, t=t, **kwargs)

        V = V + dt * F / mass
        V = V - np.mean(V, axis=0, keepdims=True)
        KE = quantity.kinetic_energy(V, mass)
        R = shift_fn(R, V * dt_2, t=t, **kwargs)

        KE, V, xi, v_xi = step_chain(KE, V, xi, v_xi, Q, DOF, T)

        return NVTNoseHooverState(R, V, mass, KE, xi, v_xi, Q)
Exemple #18
0
    def apply_fn(state, **kwargs):
        _kT = kT if 'kT' not in kwargs else kwargs['kT']

        R, V, F, mass, KE, xi, v_xi, Q = dataclasses.astuple(state)

        DOF = R.size

        Q = _kT * tau**f32(2) * np.ones(chain_length, dtype=R.dtype)
        Q = ops.index_update(Q, 0, Q[0] * DOF)

        KE, V, xi, v_xi, *_ = half_step_chain_fn(KE, V, xi, v_xi, Q, DOF, _kT)

        R = shift_fn(R, V * dt + F * dt**2 / (2 * mass), **kwargs)

        F_new = force_fn(R, **kwargs)

        V = V + dt_2 * (F_new + F) / mass

        V = V - np.mean(V, axis=0, keepdims=True)
        KE = quantity.kinetic_energy(V, mass)

        KE, V, xi, v_xi, *_ = half_step_chain_fn(KE, V, xi, v_xi, Q, DOF, _kT)

        return NVTNoseHooverState(R, V, F_new, mass, KE, xi, v_xi, Q)
Exemple #19
0
    def apply_fun(state, t=f32(0), **kwargs):
        T = T_schedule(t)

        R, V, mass, KE, xi, v_xi, Q = dataclasses.astuple(state)

        DOF, = static_cast(R.shape[0] * R.shape[1])

        Q = T * tau**f32(2) * np.ones(chain_length, dtype=R.dtype)
        Q = ops.index_update(Q, 0, Q[0] * DOF)

        KE, V, xi, v_xi = step_chain(KE, V, xi, v_xi, Q, DOF, T)
        R = shift_fn(R, V * dt_2, t=t, **kwargs)

        F = force(R, t=t, **kwargs)

        V = V + dt * F / mass
        # NOTE(schsam): Do we need to mean subtraction here?
        V = V - np.mean(V, axis=0, keepdims=True)
        KE = quantity.kinetic_energy(V, mass)
        R = shift_fn(R, V * dt_2, t=t, **kwargs)

        KE, V, xi, v_xi = step_chain(KE, V, xi, v_xi, Q, DOF, T)

        return NVTNoseHooverState(R, V, mass, KE, xi, v_xi, Q)  # pytype: disable=wrong-arg-count
Exemple #20
0
def npt_nose_hoover_invariant(energy_fn: Callable[..., Array],
                              state: NPTNoseHooverState, pressure: float,
                              kT: float, **kwargs) -> float:
    """The conserved quantity for the NPT ensemble with a Nose-Hoover thermostat.

  This function is normally used for debugging the NPT simulation.

  Arguments:
    energy_fn: The energy function of the system.
    state: The current state of the system.
    pressure: The current goal pressure of the system.
    kT: The current goal temperature of the system.

  Returns:
    The Hamiltonian of the extended NPT dynamics.
  """
    volume, box_fn = _npt_box_info(state)
    PE = energy_fn(state.position, box=box_fn(volume), **kwargs)
    KE = quantity.kinetic_energy(state.velocity, state.mass)

    DOF = state.position.size
    E = PE + KE

    c = state.thermostat
    E += c.mass[0] * c.velocity[0]**2 / 2 + DOF * kT * c.position[0]
    for r, v, m in zip(c.position[1:], c.velocity[1:], c.mass[1:]):
        E += m * v**2 / 2 + kT * r

    c = state.barostat
    for r, v, m in zip(c.position, c.velocity, c.mass):
        E += m * v**2 / 2 + kT * r

    E += pressure * volume
    E += state.box_mass * state.box_velocity**2 / 2

    return E
Exemple #21
0
        def do_fn(theta):
            key = random.PRNGKey(0)
            V = random.normal(key, (PARTICLE_COUNT, spatial_dimension),
                              dtype=f32)

            return quantity.kinetic_energy(theta * V)
Exemple #22
0
init, apply = simulate.nve(energy_fn, shift_fn, args.time / args.steps)
apply = jit(apply)
state = init(key, R, velocity_scale=0.0)

PE = []
KE = []

print_every = args.log
old_time = time.perf_counter()
print('Step\tKE\tPE\tTotal Energy\ttime/step')
print('----------------------------------------')
for i in range(args.steps // print_every):
    state = lax.fori_loop(0, print_every, lambda _, state: apply(state), state)

    PE += [energy_fn(state.position)]
    KE += [quantity.kinetic_energy(state.velocity)]
    new_time = time.perf_counter()
    print('{}\t{:.2f}\t{:.2f}\t{:.3f}\t{:.2f}'.format(
        i * print_every, KE[-1], PE[-1], KE[-1] + PE[-1],
        (new_time - old_time) / print_every / 10.0))
    old_time = new_time

PE = np.array(PE)
KE = np.array(KE)
R = state.position

import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import seaborn as sns