def read_camera(path, camera, cnt):
    #print("Tryna Read")
    img = camera.read()
    jpg = bgr8_to_jpeg(img)
    f = open(path.replace("*", str(cnt)), "wb")
    f.write(jpg)
    f.close()
def execute(change):
    image = change['new']
    data = preprocess(image)
    cmap, paf = model_trt(data)
    cmap, paf = cmap.detach().cpu(), paf.detach().cpu()
    counts, objects, peaks = parse_objects(
        cmap, paf)  #, cmap_threshold=0.15, link_threshold=0.15)
    draw_objects(image, counts, objects, peaks)
    image_w.value = bgr8_to_jpeg(image[:, ::-1, :])
 def __execute(self, change):
     image = change['new']
     data = self.__preprocess(image)
     cmap, paf = self.model_trt(data)
     cmap, paf = cmap.detach().cpu(), paf.detach().cpu()
     counts, objects, peaks = self.parse_objects(cmap, paf)
     keypoints = self.keypoint_coordinates(image, counts, objects, peaks)
     self.image_pub.publish(self.bridge.cv2_to_imgmsg(image, "bgr8"))
     if self.display_widget:
         self.display_widget.value = bgr8_to_jpeg(image[:, ::-1, :])
     else:
         self.display.set_data(image[:, :, ::-1])
         plt.pause(0.000001)
     return keypoints
def save_snapshot(_, content, msg):
    if content['event'] == 'click':
        data = content['eventData']
        x = data['offsetX']
        y = data['offsetY']

        # save to disk
        dataset.save_entry(category_widget.value, camera.value, x, y)

        # display saved snapshot
        snapshot = camera.value.copy()
        snapshot = cv2.circle(snapshot, (x, y), 8, (0, 255, 0), 3)
        snapshot_widget.value = bgr8_to_jpeg(snapshot)
        count_widget.value = dataset.get_count(category_widget.value)
def live(state_widget, model, camera, prediction_widget):
    global dataset
    while state_widget.value == 'live':
        image = camera.value
        preprocessed = preprocess(image)
        output = model(preprocessed).detach().cpu().numpy().flatten()
        category_index = dataset.categories.index(category_widget.value)
        x = output[2 * category_index]
        y = output[2 * category_index + 1]

        x = int(camera.width * (x / 2.0 + 0.5))
        y = int(camera.height * (y / 2.0 + 0.5))

        prediction = image.copy()
        prediction = cv2.circle(prediction, (x, y), 8, (255, 0, 0), 3)
        prediction_widget.value = bgr8_to_jpeg(prediction)
def execute(change):
    global frame_num 
    frame_num = frame_num + 1
    image = change['new']
    data = preprocess(image)
    cmap, paf = model_trt(data)
    cmap, paf = cmap.detach().cpu(), paf.detach().cpu()
    counts, objects, peaks = parse_objects(cmap, paf)#, cmap_threshold=0.15, link_threshold=0.15)
    draw_objects(image, counts, objects, peaks)
#     image = cv2.rotate(image, cv2.cv2.ROTATE_90_COUNTERCLOCKWISE)
    image_w.value = bgr8_to_jpeg(image[:, ::-1, :])
    clear_output(wait=True)
    keypoints = []
    for keypoint in peaks[0]:
        keypoints.append(keypoint[0])
    
    print_to_file(keypoints)
    print(f"{keypoints}", end='\r')
Exemple #7
0
"""
Simple test script to validate the motor controls and the steering and the camera and the ultrasonic sensors
"""

from jetcam.csi_camera import CSICamera
import ipywidgets
from IPython.display import display
from jetcam.utils import bgr8_to_jpeg

camera_in = CSICamera(width=224,
                      height=224,
                      capture_width=1080,
                      capture_height=720,
                      capture_fps=30)  # Default Nvidia Camera Setup

image_widget = ipywidgets.Image(format='jpeg')

while True:
    image_widget.value = bgr8_to_jpeg(camera_in.read())
    display(image_widget)

# Test motors
import actuators
drive_train = actuators.ServoMotor()
Exemple #8
0
def read_camera(path, camera, cnt):
    img = camera.read()
    jpg = bgr8_to_jpeg(img)
    f = open(path + "car_frame_" + str(cnt) + ".jpg", "wb")
    f.write(jpg)
    f.close()
Exemple #9
0
from jetcam.csi_camera import CSICamera

camera = CSICamera(width=224, height=224)

image = camera.read()

print(image.shape)

print(camera.value.shape)

import ipywidgets
from IPython.display import display
from jetcam.utils import bgr8_to_jpeg

image_widget = ipywidgets.Image(format='jpeg')

image_widget.value = bgr8_to_jpeg(image)

display(image_widget)
Exemple #10
0
def read_camera(camera, cnt):
    img = camera.read()
    jpg = bgr8_to_jpeg(img)
    f = open("images/cap" + str(cnt) + ".jpg", "wb")
    f.write(jpg)
    f.close()
import os
import traitlets
#import ipywidgets.widgets as widgets
#from IPython.display import display
#from jetbot import Camera, bgr8_to_jpeg
from uuid import uuid1

from jetcam.usb_camera import USBCamera
from jetcam.utils import bgr8_to_jpeg

directory = '.'

# Start the camera and create a video stream
#camera = USBCamera(capture_device=1)
camera = USBCamera(width=224,
                   height=224,
                   capture_width=640,
                   capture_height=480,
                   capture_device=0)
print(camera.value.shape)

# Get an bgr8 image from the camera
image = camera.read()
print(camera.value.shape)
toJpeg = bgr8_to_jpeg(image)

image_path = os.path.join(directory, str(uuid1()) + '.jpg')

with open(image_path, 'wb') as f:
    f.write(image.value)
def update_image(change):
    image = change['new']
    image_widget.value = bgr8_to_jpeg(image)