def model_fit_lsb(sed_data, my_shape, plot=True):
    from jetset.minimizer import fit_SED, ModelMinimizer
    from jetset.model_manager import FitModel
    from jetset.jet_model import Jet

    jet_lsb = Jet.load_model('prefit_jet_gal_templ.pkl')
    jet_lsb.set_gamma_grid_size(200)

    fit_model_lsb = FitModel(jet=jet_lsb,
                             name='SSC-best-fit-lsb',
                             template=my_shape.host_gal)
    fit_model_lsb.freeze('jet_leptonic', 'z_cosm')
    fit_model_lsb.freeze('jet_leptonic', 'R_H')
    fit_model_lsb.jet_leptonic.parameters.beam_obj.fit_range = [5, 50]
    fit_model_lsb.jet_leptonic.parameters.R.fit_range = [10**15.5, 10**17.5]
    fit_model_lsb.jet_leptonic.parameters.gmax.fit_range = [1E4, 1E8]
    fit_model_lsb.host_galaxy.parameters.nuFnu_p_host.frozen = False
    fit_model_lsb.host_galaxy.parameters.nu_scale.frozen = True

    model_minimizer_lsb, best_fit_lsb = fit_SED(fit_model_lsb,
                                                sed_data,
                                                10.0**11,
                                                10**29.0,
                                                fitname='SSC-best-fit-lsb',
                                                minimizer='lsb')

    best_fit_lsb.save_report('best-fit-minuit-report.txt')
    fit_model_lsb.save_model('fit_model_lsb.pkl')
    fit_model_lsb_new = FitModel.load_model('fit_model_lsb.pkl')

    model_minimizer_lsb.save_model('model_minimizer_lsb.pkl')
    model_minimizer_lsb_new = ModelMinimizer.load_model(
        'model_minimizer_lsb.pkl')

    return jet_lsb, model_minimizer_lsb_new, fit_model_lsb_new
def model_fit_minuit(sed_data, my_shape, plot=True):
    from jetset.minimizer import fit_SED
    from jetset.model_manager import FitModel
    from jetset.jet_model import Jet

    jet_minuit = Jet.load_model('prefit_jet_gal_templ.pkl')
    jet_minuit.set_gamma_grid_size(200)

    fit_model_minuit = FitModel(jet=jet_minuit,
                                name='SSC-best-fit-minuit',
                                template=my_shape.host_gal)
    fit_model_minuit.freeze('z_cosm')
    fit_model_minuit.freeze('R_H')
    fit_model_minuit.jet_leptonic.parameters.beam_obj.fit_range = [5, 50]
    fit_model_minuit.jet_leptonic.parameters.R.fit_range = [10**15.5, 10**17.5]
    fit_model_minuit.host_galaxy.parameters.nuFnu_p_host.frozen = False
    fit_model_minuit.host_galaxy.parameters.nu_scale.frozen = True

    model_minimizer_minuit, best_fit_minuit = fit_SED(
        fit_model_minuit,
        sed_data,
        10.0**11,
        10**29.0,
        fitname='SSC-best-fit-minuit',
        minimizer='minuit')

    best_fit_minuit.save_report('best-fit-minuit-report.txt')
    fit_model_minuit.save_model('fit_model_minuit.pkl')

    return jet_minuit, model_minimizer_minuit
def test_dep_par_jet(plot=False):
    import numpy as np

    from jetset.jet_model import Jet
    j = Jet(emitters_distribution='plc')
    j.add_user_par(name='B0',units='G',val=1E-5,val_min=0,val_max=None)
    j.make_dependent_par(par='B',depends_on=['B0'],par_expr='B0*5')
    np.testing.assert_allclose(j.parameters.B.val, j.parameters.B0.val*5)

    j.save_model('test.pkl')
    new_j=Jet.load_model('test.pkl')
    new_j.parameters.B0.val=1
    np.testing.assert_allclose(new_j.parameters.B.val, new_j.parameters.B0.val*5)
def test_custom_emitters(plot=True):
    from jetset.jet_model import Jet

    from jetset.jet_emitters import EmittersDistribution
    import numpy as np

    def distr_func_bkn(gamma_break, gamma, s1, s2):
        return np.power(gamma, -s1) * (1. +
                                       (gamma / gamma_break))**(-(s2 - s1))

    n_e = EmittersDistribution('custom_bkn', spectral_type='bkn')
    n_e.add_par('gamma_break',
                par_type='turn-over-energy',
                val=1E3,
                vmin=1.,
                vmax=None,
                unit='lorentz-factor')
    n_e.add_par('s1',
                par_type='LE_spectral_slope',
                val=2.5,
                vmin=-10.,
                vmax=10,
                unit='')
    n_e.add_par('s2',
                par_type='LE_spectral_slope',
                val=3.2,
                vmin=-10.,
                vmax=10,
                unit='')
    n_e.set_distr_func(distr_func_bkn)
    n_e.parameters.show_pars()
    n_e.parameters.s1.val = 2.0
    n_e.parameters.s2.val = 3.5
    if plot is True:
        n_e.plot()

    my_jet = Jet(emitters_distribution=n_e)
    my_jet.Norm_distr = True
    my_jet.parameters.N.val = 5E4
    my_jet.eval()
    np.testing.assert_allclose(my_jet.emitters_distribution.eval_N(),
                               my_jet.parameters.N.val,
                               rtol=1E-5)
    print(my_jet.emitters_distribution.eval_N(), my_jet.parameters.N.val)
    print(n_e.eval_N(), my_jet.parameters.N.val)
    assert (my_jet.emitters_distribution.emitters_type == 'electrons')
    my_jet.save_model('test_jet_custom_emitters.pkl')
    my_jet = Jet.load_model('test_jet_custom_emitters.pkl')
    my_jet.eval()
def test_jet(plot=True):
    #print('--------> plot',plot)
    from jetset.jet_model import Jet
    j = Jet()
    j.eval()
    j.energetic_report()

    if plot is True:
        j.plot_model()
        j.emitters_distribution.plot()
        j.emitters_distribution.plot2p()
        j.emitters_distribution.plot3p()
        j.emitters_distribution.plot3p(energy_unit='eV')
        j.emitters_distribution.plot3p(energy_unit='erg')
    j.save_model('test_jet.pkl')
    j_new = Jet.load_model('test_jet.pkl')
def test_custom_emitters_array(plot=True):
    from jetset.jet_model import Jet
    from jetset.jet_emitters import EmittersArrayDistribution
    import numpy as np

    # gamma array
    gamma = np.logspace(1, 8, 500)

    # gamma array this is n(\gamma) in 1/cm^3/gamma
    n_gamma = gamma**-2 * 1E-5 * np.exp(-gamma / 1E5)

    N1 = np.trapz(n_gamma, gamma)

    n_distr = EmittersArrayDistribution(name='array_distr',
                                        emitters_type='protons',
                                        gamma_array=gamma,
                                        n_gamma_array=n_gamma,
                                        normalize=False)

    N2 = np.trapz(n_distr._array_n_gamma, n_distr._array_gamma)

    j = Jet(emitters_distribution=n_distr, verbose=False)

    j.parameters.z_cosm.val = z = 0.001
    j.parameters.beam_obj.val = 1
    j.parameters.N.val = 1
    j.parameters.NH_pp.val = 1
    j.parameters.B.val = 0.01
    j.parameters.R.val = 1E18
    j.set_IC_nu_size(100)
    j.gamma_grid_size = 200

    N3 = np.trapz(j.emitters_distribution.n_gamma_p,
                  j.emitters_distribution.gamma_p)

    np.testing.assert_allclose(N1, N2, rtol=1E-5)
    np.testing.assert_allclose(N1, N3, rtol=1E-2)
    np.testing.assert_allclose(N1, j.emitters_distribution.eval_N(), rtol=1E-2)
    assert (j.emitters_distribution.emitters_type == 'protons')

    j.eval()
    j.save_model('test_jet_custom_emitters_array.pkl')
    j = Jet.load_model('test_jet_custom_emitters_array.pkl')
    j.eval()
def test_jet(plot=True):
    print('--------> test_jet', plot)
    from jetset.jet_model import Jet
    j = Jet()
    j.eval()
    j.energetic_report()
    sum1 = j.spectral_components.Sum.SED.nuFnu
    if plot is True:
        j.plot_model()
        j.emitters_distribution.plot()
        j.emitters_distribution.plot2p()
        j.emitters_distribution.plot3p()
        j.emitters_distribution.plot3p(energy_unit='eV')
        j.emitters_distribution.plot3p(energy_unit='erg')
    j.save_model('test_jet.pkl')
    j_new = Jet.load_model('test_jet.pkl')
    j_new.eval()
    sum2 = j_new.spectral_components.Sum.SED.nuFnu
    np.testing.assert_allclose(sum2, sum1, rtol=1E-5)
Exemple #8
0
def test_prepare_fit(sed_data=None, prefit_jet=None, plot=True,sed_number=1):
    from jetset.jet_model import Jet

    if sed_data is None:
        from .test_data import test_data_loader
        sed_data = test_data_loader(plot=plot, sed_number=sed_number)

    if prefit_jet is None:
        from .test_phenom_constr import test_model_constr
        prefit_jet, my_shape = test_model_constr(sed_data=sed_data)

    if hasattr(my_shape, 'host_gal'):
        template = my_shape.host_gal
    else:
        template = None

    jet = Jet.load_model('prefit_jet.pkl')
    jet.set_gamma_grid_size(200)

    return template,jet,sed_data
def test_hadronic_jet(plot=True):
    from jetset.jet_model import Jet
    j = Jet(proton_distribution='plc')
    j.parameters.gmin.val = 2
    j.parameters.gmax.val = 1E8
    j.parameters.NH_pp.val = 1E10
    j.parameters.N.val = 1E1
    j.parameters.B.val = 80

    j.parameters.p.val = 2.5
    j.eval()
    j.show_model()
    sum1 = j.spectral_components.Sum.SED.nuFnu
    if plot is True:
        j.plot_model()
    j.save_model('test_jet_hadronic.pkl')
    j_new = Jet.load_model('test_jet_hadronic.pkl')
    j_new.eval()
    sum2 = j_new.spectral_components.Sum.SED.nuFnu
    np.testing.assert_allclose(sum2, sum1, rtol=1E-5)
Exemple #10
0
def model_fit_lsb(sed_data, ):
    from jetset.minimizer import fit_SED
    from jetset.model_manager import FitModel
    from jetset.jet_model import Jet

    jet = Jet.load_model('prefit_jet.dat')

    fit_model = FitModel(jet=jet, name='SSC-best-fit', template=None)
    fit_model.freeze('z_cosm')
    fit_model.freeze('R_H')
    fit_model.parameters.R.fit_range = [10**15.5, 10**17.5]
    fit_model.parameters.gmax.fit_range = [1E4, 1E8]
    model_minimizer_lsb, best_fit_lsb = fit_SED(fit_model,
                                                sed_data,
                                                10.0**11,
                                                10**29.0,
                                                fitname='SSC-best-fit',
                                                minimizer='lsb')
    best_fit_lsb.save_report('best-fit-lsb-report.txt')
    fit_model.save_model('fit_model_lsb.dat')
def test_dep_par(plot=False):
    from jetset.jet_emitters import EmittersDistribution
    import numpy as np

    def distr_func_bkn(gamma_break, gamma, s1, s2):
        return np.power(gamma, -s1) * (1. + (gamma / gamma_break)) ** (-(s2 - s1))

    n_e_bkn = EmittersDistribution('bkn', spectral_type='bkn')
    n_e_bkn.add_par('gamma_break', par_type='turn-over-energy', val=1E3, vmin=1., vmax=None, unit='lorentz-factor')
    n_e_bkn.add_par('s1', par_type='LE_spectral_slope', val=2.5, vmin=-10., vmax=10, unit='')
    n_e_bkn.add_par('s2', par_type='LE_spectral_slope', val=3.2, vmin=-10., vmax=10, unit='')
    n_e_bkn.set_distr_func(distr_func_bkn)
    n_e_bkn.parameters.show_pars()
    n_e_bkn.parameters.s1.val = 2.0
    n_e_bkn.parameters.s2.val = 3.5
    n_e_bkn.update()
    n_e_bkn.parameters.show_pars()

    from jetset.jet_model import Jet

    j = Jet(emitters_distribution=n_e_bkn)

    # def par_func(s1):
    #    return s1+1
    j.make_dependent_par(par='s2', depends_on=['s1'], par_expr='s1+1')
    print('here')
    j.parameters.s1.val = 3
    print('done')
    np.testing.assert_allclose(j.parameters.s2.val, j.parameters.s1.val + 1)
    j.save_model('jet.pkl')
    new_jet = Jet.load_model('jet.pkl')
    print('here')
    new_jet.parameters.s1.val = 2
    print('done')

    np.testing.assert_allclose(new_jet.parameters.s2.val, new_jet.parameters.s1.val + 1)
    j.eval()
    new_jet.show_model()