Exemple #1
0
def REGRESSION(x_list, y_list):
    """
    Regression
    Returns: dict of lists of floats = jhta.REGRESSION(x_list, y_list)
    Source: https://www.wallstreetmojo.com/regression-formula/
    """
    xy_list = []
    x2_list = []
    for i in range(len(x_list)):
        x = x_list[i]
        y = y_list[i]
        xy = x * y
        x2 = x * x
        xy_list.append(xy)
        x2_list.append(x2)

    # set n:
    n = len(x_list)

    # sum it:
    x_sum = jhta.SUM({'x_list': x_list}, n, 'x_list')[-1]
    y_sum = jhta.SUM({'y_list': y_list}, n, 'y_list')[-1]
    xy_sum = jhta.SUM({'xy_list': xy_list}, n, 'xy_list')[-1]
    x2_sum = jhta.SUM({'x2_list': x2_list}, n, 'x2_list')[-1]

    # calculate intercept:
    a = ((y_sum * x2_sum) - (x_sum * xy_sum)) / (n * x2_sum - x_sum**2)

    # calculate slope:
    b = ((n * xy_sum) - (x_sum * y_sum)) / (n * x2_sum - x_sum**2)

    estimate_list = []
    err_list = []
    err2_list = []
    for i in range(len(x_list)):
        x = x_list[i]
        y = y_list[i]
        # calculate estimate:
        yes = a + b * x
        estimate_list.append(yes)
        # calculate error:
        err = y - yes
        err_list.append(err)
        # calculate square error:
        err2 = err**2
        err2_list.append(err2)

    return {'estimate': estimate_list, 'err': err_list, 'err2': err2_list}
def LSR(df, price='Close', predictions_int=0):
    """
    Least Squares Regression
    """
    x_list = []
    y_list = []
    x2_list = []
    xy_list = []
    i = 0
    while i < len(df[price]):
        # For each (x,y) calculate x2 and xy:
        x = i
        y = df[price][i]
        x2 = x * x
        xy = x * y
        x_list.append(x)
        y_list.append(y)
        x2_list.append(x2)
        xy_list.append(xy)
        i += 1

    # Sum all x, y, x2 and xy, which gives us Σx, Σy, Σx2 and Σxy:
    x_sum = jhta.SUM({'x_list': x_list}, len(x_list), 'x_list')[-1]
    y_sum = jhta.SUM({'y_list': y_list}, len(y_list), 'y_list')[-1]
    x2_sum = jhta.SUM({'x2_list': x2_list}, len(x2_list), 'x2_list')[-1]
    xy_sum = jhta.SUM({'xy_list': xy_list}, len(xy_list), 'xy_list')[-1]

    # set n:
    n = len(df[price])

    # Calculate Slope:
    m = (n * xy_sum - x_sum * y_sum) / (n * x2_sum - x_sum * x_sum)

    # Calculate Intercept:
    b = (y_sum - m * x_sum) / n

    lsr_list = []
    i = 0
    while i < len(df[price]) + predictions_int:
        # Assemble the equation of a line:
        lsr = m * i + b
        lsr_list.append(lsr)
        i += 1
    return lsr_list
Exemple #3
0
def LSR(df, price='Close', predictions_int=0):
    """
    Least Squares Regression
    Returns: list of floats = jhta.LSR(df, price='Close', predictions_int=0)
    Source: https://www.mathsisfun.com/data/least-squares-regression.html
    """
    x_list = []
    y_list = []
    x2_list = []
    xy_list = []
    for i in range(len(df[price]) - predictions_int):
        # For each (x,y) calculate x2 and xy:
        x = i
        y = df[price][i]
        x2 = x * x
        xy = x * y
        x_list.append(x)
        y_list.append(y)
        x2_list.append(x2)
        xy_list.append(xy)

    # Sum all x, y, x2 and xy, which gives us Σx, Σy, Σx2 and Σxy:
    x_sum = jhta.SUM({'x_list': x_list}, len(x_list), 'x_list')[-1]
    y_sum = jhta.SUM({'y_list': y_list}, len(y_list), 'y_list')[-1]
    x2_sum = jhta.SUM({'x2_list': x2_list}, len(x2_list), 'x2_list')[-1]
    xy_sum = jhta.SUM({'xy_list': xy_list}, len(xy_list), 'xy_list')[-1]

    # set n:
    n = len(df[price]) - predictions_int

    # Calculate Slope:
    m = (n * xy_sum - x_sum * y_sum) / (n * x2_sum - x_sum * x_sum)

    # Calculate Intercept:
    b = (y_sum - m * x_sum) / n

    # Assemble the equation of a line:
    return [m * i + b for i in range(len(df[price]))]
Exemple #4
0
def INFO(df, price='Close'):
    """
    Print df Information
    """
    print('{:_<28}:{:_>22}'.format('DF PRICE COLUMN', price))
    print('{:_<28}:{:_>22d}'.format('LEN', len(df[price])))
    print('{:_<28}:{:_>28.5f}'.format('MIN',
                                      jhta.MIN(df, len(df[price]), price)[-1]))
    print('{:_<28}:{:_>28.5f}'.format('MAX',
                                      jhta.MAX(df, len(df[price]), price)[-1]))
    print('{:_<28}:{:_>28.5f}'.format('SUM',
                                      jhta.SUM(df, len(df[price]), price)[-1]))
    print('{:_<28}:{:_>28.5f}'.format('MEAN',
                                      jhta.MEAN(df, len(df[price]),
                                                price)[-1]))
    #    print ('{:_<28}:{:_>28.5f}'.format('HARMONIC_MEAN', jhta.HARMONIC_MEAN(df, len(df[price]), price)[-1]))
    print('{:_<28}:{:_>28.5f}'.format(
        'MEDIAN',
        jhta.MEDIAN(df, len(df[price]), price)[-1]))
    print('{:_<28}:{:_>28.5f}'.format(
        'MEDIAN_LOW',
        jhta.MEDIAN_LOW(df, len(df[price]), price)[-1]))
    print('{:_<28}:{:_>28.5f}'.format(
        'MEDIAN_HIGH',
        jhta.MEDIAN_HIGH(df, len(df[price]), price)[-1]))
    print('{:_<28}:{:_>28.5f}'.format(
        'MEDIAN_GROUPED',
        jhta.MEDIAN_GROUPED(df, len(df[price]), price)[-1]))
    #    print ('{:_<28}:{:_>28.5f}'.format('MODE', jhta.MODE(df, len(df[price]), price)[-1]))
    print('{:_<28}:{:_>28.5f}'.format(
        'PSTDEV',
        jhta.PSTDEV(df, len(df[price]), price)[-1]))
    print('{:_<28}:{:_>28.5f}'.format(
        'PVARIANCE',
        jhta.PVARIANCE(df, len(df[price]), price)[-1]))
    print('{:_<28}:{:_>28.5f}'.format(
        'STDEV',
        jhta.STDEV(df, len(df[price]), price)[-1]))
    print('{:_<28}:{:_>28.5f}'.format(
        'VARIANCE',
        jhta.VARIANCE(df, len(df[price]), price)[-1]))