Exemple #1
0
def LABdo(freq):
    from jizhipy.Array import Asarray
    freq = Asarray(freq)
    fmin, fmax = freq.min(), freq.max()
    if (fmax < LABfreq[0]): return False
    elif (fmin > LABfreq[1]): return False
    else: return True
Exemple #2
0
	def WaveVector( self, thetaphi=None, widthshape=None, freq=None ) : 
		'''
		\vec{k} = 2pi/lambda * (xk, yk, zk)
		(xk, yk, zk) = thetaphi2xyz(thetaphi)
		(1) WaveVector( thetaphi, freq ) : set self.k, self.thetaphi, self.freq
		(2) WaveVector( thetaphi ) : set self.thetaphi

		self.thetaphi.shape = (2, N_sky-direction)
		self.k.shape = (3, N_sky-direction)

		Generate thetaphi matrix:
		thetaphi, widthshape: use one of them
		(1) give thetaphi argument: 
		thetaphi: 
			thetaphi.shape = (2, N_sky-direction)
			2: (theta, phi) in [rad]
				direction of incident on celestial shpere
				Ground experiment: is half celestial sphere
				Space  experiment: is all  celestial sphere

		(2) give widthshape argument:
			widthNpix = (thetawidth, shape)
				thetawidth: 1 value/float in [rad]
				shape: N | (N,) | (N1, N2)
			Call Beam.ThetaPhiMatrix(thetawidth, Npix)

		freq:
			[MHz], observation frequency
			must be 1 value
			If given, calculate \vec{k}

			k.shape = (3, N_sky-direction)
			3: (xk, yk, zk), NOTE THAT have *2pi/lambda
			N_sky-direction: direction of the incident light

		NOTE THAT (xk, yk, zk) and thetaphi must be in the SAME coordinate system of self.feedpos !!!
		'''
		import numpy as np
		from jizhipy.Transform import CoordTrans
		from jizhipy.Astro import Beam
		from jizhipy.Basic import IsType
		from jizhipy.Array import Asarray
		
		# self.thetaphi
		if (thetaphi is not None) : 
			thetaphi = np.array(thetaphi)
			if (thetaphi.size == 2) : thetaphi = thetaphi.reshape(2, 1)
		else : 
			thetawidth, shape = widthshape
			shape = Asarray(shape, int).flatten()
			self.width = float(thetawidth)
			self.shape = tuple(shape)
			if (shape.size == 1) : 
				theta = np.linspace(-thetawidth/2., thetawidth/2., shape[0])
				thetaphi = np.array([theta, 0*theta])
			else : 
				thetaphi = Beam.ThetaPhiMatrix(thetawidth, shape.max())
				n = shape.max() - shape.min()
				n1, n2 = n/2, n-n/2
				if (shape[0] < shape[1]) : 
					thetaphi = thetaphi[:,n1:-n2]
				elif (shape[0] > shape[1]) : 
					thetaphi = thetaphi[:,:,n1:-n2]
		self.thetaphi = thetaphi
		#----------------------------------------
		if (freq is not None) : 
			freq = float(freq)
			k = 2*np.pi / (300./freq) * CoordTrans.thetaphi2xyz(self.thetaphi)
			self.k, self.freq = k, freq
Exemple #3
0
    def ProbabilityDensity(self,
                           randomvariable,
                           bins,
                           weight=None,
                           wmax2a=None,
                           nsigma=6,
                           density=True):
        '''
		Return the probability density or number counting of array.
		Return:
			[xe, xc, y]
			xe is the edge of the bins.
			xc is the center of the bins.
			y  is the probability density of each bin, 

		
		randomvariable==array:
			Input array must be flatten()
	
		bins:
			(1) ==list/ndarray with .size>3: 
				** Then ignore  brange, weight, wmax2a
				use this as the edge of the bins
				total number of the bins is bins.size-1 (x.size=bins.size, xc.size=bins.size-1)
			(2) ==list/ndarray with .size==3
				** nbins, bmin, bmax = bins
				nbins: number of bins
				bmin, bmax: min and max of bins, NOT use the whole bin
			(3) ==int_number:
				** Then use weight and wmax2a
				Give the total number of the bins, in this case, x.size=bins+1, xc.size=bins

		weight:
			** Use this only when bins==int_number
			'G', 'K0' | None | ndarray with size=bins
			(1) ==None: each bin has the same weight => uniform bins
			(2) ==ndarray: give weights to each bins
			(3) =='G': use Gaussian weight
			    =='K0': use modified Bessel functions of the second kind

		wmax2a:
			** Use this only when bins==int_number and weight is not None
			float | None
			(1) ==None: means weight[0]=>bins[0], weight[1]=>bins[1], weight[i]=>bins[i]
			(2) ==float: 
				uniform bin b = np.linspace(array.min(), array.max(), bins+1)
				value wmax2a is in nb-th bin: b[nb] <= wmax2a <= b[nb+1]
				weight.max() => weight[nmax]
				!!! Give weight[nmax] to the bin b[nb] (then reorder the weight array)
		
		nsigma:
			float | None (use all data)
			When generate the bins, won't use the whole range of array, set nsigma, will throw away the points beyond the mean
	
		density:
			If True, return the probability density = counting / total number / bin width
			If False, return the counting number of each bin

		Return:
			[xe, xc, y]
			xe is the edge of the bins.
			xc is the center of the bins.
			y  is the probability density of each bin, 
		'''
        import numpy as np
        from jizhipy.Process import Edge2Center
        from jizhipy.Array import Asarray
        #---------------------------------------------
        # nsigma
        # Throw away the points beyond the mean
        try:
            nsigma = float(nsigma)
        except:
            nsigma = None
        array = Asarray(randomvariable).flatten()
        sigma, mean = array.std(), array.mean()
        if (nsigma is not None):
            array = array[(mean - nsigma * sigma <= array) *
                          (array <= mean + nsigma * sigma)]
        amin, amax = array.min(), array.max()
        #---------------------------------------------
        if (Asarray(bins).size <= 3):
            bins = self.Bins(array, bins, weight, wmax2a, None)
        bins = Asarray(bins)
        #---------------------------------------------
        bins = bins[bins >= amin]
        bins = bins[bins <= amax]
        tf0, tf1 = False, False
        if (abs(amin - bins[0]) > 1e-6):
            bins = np.append([amin], bins)
            tf0 = True
        if (abs(amax - bins[-1]) > 1e-6):
            bins = np.append(bins, [amax])
            tf1 = True
        #---------------------------------------------
        y, bins = np.histogram(array, bins=bins, density=density)
        if (tf0): y, bins = y[1:], bins[1:]
        if (tf1): y, bins = y[:-1], bins[:-1]
        x = Edge2Center(bins)
        return [bins, x, y]
Exemple #4
0
    def RandomVariable(self, shape, x, pdf, norm=True):
        '''
		Invert operation of ProbabilityDensity()
		Provide probability density, return random variable

		shape:
			The shape of generated random variable
	
		pdf==fx, norm:
			fx: 
				isfunc | isndarray
				(1) isfunc: fx = def f(x), f(x) is the probability density function
				(2) isndarray: fx.size = x.size
			norm:
				True | False
				fx must be
					1. fx >= 0
					2. \int_{-\inf}^{+\inf} fx dx = 1
				Only if norm=False, not normal it, otherwise, always normal it.
	
		x:
			isndarray, must be 1D
			Use fx and x to obtain the inverse function of the cumulative distribution function, x = F^{-1}(y)
	
		return: 
			1D ndarray with shape, random variable
		'''
        import numpy as np
        from jizhipy.Array import Asarray
        from jizhipy.Basic import IsType, Raise
        from jizhipy.Optimize import Interp1d
        #---------------------------------------------
        x = Asarray(x).flatten()
        if (not IsType.isfunc(fx)):
            fx = Asarray(fx).flatten()
            if (x.size != fx.size):
                Raise(Exception,
                      'fx.size=' + str(fx.size) + ' != x.size=' + str(x.size))
        else:
            fx = fx(x)
        fx *= 57533.4
        #---------------------------------------------
        # sort x from small to large
        x = np.sort(x + 1j * fx)
        fx, x = x.imag, x.real
        #---------------------------------------------
        dx = x[1:] - x[:-1]
        dx = np.append(dx, dx[-1:])
        #---------------------------------------------
        # Normal fx
        if (norm is not False):
            fxmin = fx.min()
            if (fxmin < 0): fx -= fxmin
            fx /= (fx.sum() * dx)
        #---------------------------------------------
        # Cumulative distribution function
        fx = fx.cumsum() * dx
        #---------------------------------------------
        # Inverse function
        F_1 = Interp1d(fx, x, None)
        #---------------------------------------------
        # Uniform random with shape
        x = np.random.random(shape)
        #---------------------------------------------
        # Random variable with f(x)
        b = F_1(x)
        return b
Exemple #5
0
    def Bins(self, array, nbins, weight=None, wmax2a=None, nsigma=None):
        '''
		nbins:
			(1) ==list/ndarray with .size==3
				** nbins, bmin, bmax = bins
				nbins: number of bins
				bmin, bmax: min and max of bins, NOT use the whole bin
			(2) ==int_number:
				** Then use weight and wmax2a
				Give the total number of the bins, in this case, x.size=bins+1, xc.size=bins

		nsigma:
			float | None
			When generate the bins, won't use the whole range of array, set nsigma, will use |array| <= nsigma*array.std()

		weight:
			** Use this only when bins==int_number
			'G?', 'K?' | None | ndarray with size=bins
			(1) ==None: each bin has the same weight => uniform bins
			(2) ==ndarray: give weights to each bins
			(3) =='G?': 
					'?' should be an value, for example, 'G1', 'G2.3', 'G5.4', 'G12', use Gaussian weight, and obtain it from np.linspace(-?, +?, bins)
			    =='K?': 
					'?' should be an value, for example, 'K1', 'K2.3', 'K5.4', 'K12', use modified Bessel functions of the second kind, and obtain it from np.linspace(-?, +?, bins)

		wmax2a:
			Use it when weight is not None
			float | None
			(1) ==float: weight.max() corresponds to which bin, the bin which value wmax2a is in
		'''
        import numpy as np
        from jizhipy.Basic import IsType
        from jizhipy.Array import Invalid, Asarray
        from jizhipy.Math import Gaussian
        #---------------------------------------------
        array = Asarray(array)
        if (nsigma is not None):
            mean, sigma = array.mean(), array.std()
            array = array[(mean - nsigma * sigma <= array) *
                          (array <= mean + nsigma * sigma)]
        amin, amax = array.min(), array.max()
        #---------------------------------------------
        if (Asarray(nbins).size == 3): nbins, bmin, bmax = nbins
        else: bmin, bmax = amin, amax
        #---------------------------------------------
        # First uniform bins
        bins = np.linspace(bmin, bmax, nbins + 1)
        bstep = bins[1] - bins[0]
        #---------------------------------------------
        # weight
        if (weight is not None):
            if (IsType.isstr(weight)):
                w, v = str(weight[0]).lower(), abs(float(weight[1:]))
                if (v == 0): v = 1
                x = np.linspace(-v, v, nbins)
                if (w == 'k'):
                    import scipy.special as spsp
                    weight = spsp.k0(abs(x))
                    weight = Invalid(weight)
                    weight.data[weight.mask] = 2 * weight.max()
                else:  # Gaussian
                    weight = Gaussian.GaussianValue1(x, 0, 0.4)
            #--------------------
            # wmax2a
            if (wmax2a is not None):
                nmax = int(round(np.where(weight == weight.max())[0].mean()))
                nb = abs(bins - wmax2a)
                nb = np.where(nb == nb.min())[0][0]
                for i in range(bins.size - 1):
                    if (bins[i] <= wmax2a < bins[i + 1]):
                        nb = i
                        break
                d = abs(nmax - nb)
                if (nmax < nb): weight = np.append(weight[-d:], weight[:-d])
                elif (nmax > nb): weight = np.append(weight[d:], weight[:d])
            #--------------------
            weight = weight[:nbins]
            if (weight.size < nbins):
                weight = np.concatenate([weight] +
                                        (nbins - weight.size) * [weight[-1:]])
            weight = weight.max() - weight + weight.min()
            weight /= weight.sum()
            weight = weight.cumsum()
            #--------------------
            c = bins[0] + (bmax - bmin) * weight
            bins[1:-1] = c[:-1]
            #--------------------
            bins = list(bins)
            n = 1
            while (n < len(bins)):
                if (bins[n] - bins[n - 1] < bstep / 20.):
                    bins = bins[:n] + bins[n + 1:]
                else:
                    n += 1
            bins = Asarray(bins)
        #---------------------------------------------
        return bins
Exemple #6
0
    def LM2Index(self, which, lmax, l, m, order=None, symmetry=True):
        '''
		Usage:
			See MapMaking.py

		lmax:
			int, must be one
	
		l, m: 
			Can be one or 1D array
	
		order:
			'2D': return 2D matrix with np.nan
			None: remove np.nan and return 1D(flatten) ndarray
			'l': return 1D array ordered by l from small to large
			'm': return 1D array ordered by m from small to large
			'i': return 1D array ordered by index from small to large
	
		which == 'Alm' : 
			if (self.fgsymm) : index = (m*lmax - m*(m-1)/2 + l)
			else : 
				if (m >= 0)   : index = (m*lmax - m*(m-1)/2 + l)
				else : 
					m = -m
					index = (m-1)*self.lmax-m*(m-1)/2+l+self.offnm-1
	
		which == 'AlmDS' : 
			index = l*(l+1) + m
	
		return:
			[index, morder, lorder]
			'2D': index.shape=(l.size, m.size), lorder=l[:,None], morder=m[None,:]
			Others: 1D with index.size==lorder.size==morder.size
		'''
        import numpy as np
        from jizhipy.Array import Asarray, Invalid, Sort
        from jizhipy.Basic import Raise
        l, m = Asarray(l).flatten(), Asarray(m).flatten()
        if (l[l > lmax].size > 0):
            Raise(
                Exception, 'l=[' + str(l.min()) + ', ..., ' + str(l.max()) +
                '] > lmax=' + str(lmax))
        if (abs(m)[abs(m) > lmax].size > 0):
            Raise(
                Exception, 'm=[' + str(m.min()) + ', ..., ' + str(m.max()) +
                '] > lmax=' + str(lmax))
        #--------------------------------------------------
        #--------------------------------------------------
        if (str(which).lower() == 'alm'):
            if (symmetry):
                index = lmax * m[None, :] - m[None, :] * (m[None, :] -
                                                          1) / 2. + l[:, None]
            else:
                morder = np.append(
                    np.arange(m.size)[m >= 0],
                    np.arange(m.size)[m < 0])
                mpos, mneg = m[m >= 0], abs(m[m < 0])
                indexpos = lmax * mpos[None, :] - mpos[None, :] * (
                    mpos[None, :] - 1) / 2. + l[:, None]
                indexneg = lmax * (mneg[None, :] - 1) - mneg[None, :] * (
                    mneg[None, :] - 1) / 2. + l[:, None] + self.offnm - 1
                index = np.append(indexpos, indexneg, 1)
                indexpos = indexneg = mpos = mneg = 0  #@
                index = index[:, morder]
            #--------------------------------------------------
        elif (str(which).lower() == 'almds'):
            index = l[:, None] * (l[:, None] + 1) + m[None, :] + 0.
        #--------------------------------------------------
        #--------------------------------------------------
        for i in range(l.size):
            index[i, abs(m) > l[i]] = np.nan
        #--------------------------------------------------
        if (order == '2D'): return [index, m[None, :], l[:, None]]
        #--------------------------------------------------
        lorder = (index * 0 + 1) * l[:, None]
        morder = (index * 0 + 1) * m[None, :]
        lorder = Invalid(lorder, False).astype(int)
        morder = Invalid(morder, False).astype(int)
        index = Invalid(index, False).astype(int)
        #--------------------------------------------------
        if (order is not None):
            if (str(order).lower() == 'i'): along = '[0,:]'
            elif (str(order).lower() == 'l'): along = '[1,:]'
            elif (str(order).lower() == 'm'): along = '[2,:]'
            index = np.array([index, lorder, morder])
            index, lorder, morder = Sort(index, along)
        if (index.size == 1):
            index, lorder, morder = index[0], lorder[0], morder[0]
        return [index, morder, lorder]
Exemple #7
0
def ColorfulLine( x, y, z=None, lcarray=None, edge=None, ax=None, **kwargs ) : 
	'''
	plot Multicolor line
	return ax
	
	z:
		for 3D line

	lcarray:
		color from blue to red, corresponding to lcarray.min() to lcarray.max()
		In principle, lcarray can be any array from small to large. In practice, generally set lcarray=x or lcarray=y or lcarray=z

	edge:
		int
		Split lcarray(also from blue to red) into 'edge' pieces, each piece has one color

	lcarray + edge: create color map

	**kwargs:
		Can set: marker, ms, mec, ls, lw, ......
		** mec=True: mec == color of marker | mec=False: maybe 'k' or marker color dependent on matplotlib setting

	Example:
		x = np.linspace(0, 8*np.pi, 1000)
		y = np.sin(x)
		ColorfulLine(x, y, lcarray=x, edge=10, marker='o')
	'''
	import matplotlib.pyplot as plt
	from mpl_toolkits.mplot3d import Axes3D
	import numpy as np
	from jizhipy.Array import Asarray
	from jizhipy.Basic import Raise, IsType
	if (lcarray is None) : lcarray = x
	lcarray = Asarray(lcarray)
	#---------------------------------------------
	if (edge is None) : edge = 100
	if (IsType.isint(edge)) : 
		if(edge >lcarray.size*4/5): edge=lcarray.size*4/5
		edge = np.linspace(lcarray.min(), lcarray.max(), edge)
	# Check edge
	edge2 = [edge[0]]
	for i in range(len(edge)-1) : 
		tf = (edge[i]<=lcarray)*(lcarray<=edge[i+1])
		n = lcarray[tf].size
		if (n >= 2) : edge2.append(edge[i+1])
	if (len(edge2) == 1) : edge2.append(lcarray.size)
	edge = Asarray(edge2)
	#---------------------------------------------
	color = plt_color.line(len(edge)-1, 'my')
	if ('color' in kwargs) : kwargs.pop('color')
	if ('c' in kwargs) : kwargs.pop('c')
	x, y = Asarray(x), Asarray(y)
	if (lcarray.shape != x.shape) : Raise(Exception, 'jizhipy.Plot.ColorfulLine(): lcarray.shape='+str(lcarray.shape)+' != x.shape='+str(x.shape))
	#---------------------------------------------
	if ('marker' in kwargs.keys()) : 
		if ('ls' not in kwargs.keys() and 'linestyle' not in kwargs.keys()) : kwargs['ls'] = ''
	if ('mec' in kwargs.keys() and kwargs['mec'] is True):
		mec = True
		kwargs.pop('mec')
	else : mec = False
	#---------------------------------------------
	n = np.arange(x.size)
	if (z is None) : 
		if (ax is None) : ax = plt.gca()
		for i in range(len(color)) : 
			tf = n[(edge[i]<=lcarray)*(lcarray<=edge[i+1])]
			if (tf[0] != 0) : tf[0] -= 1
			if (mec) : ax.plot(x[tf], y[tf], color=color[i], mec=color[i], **kwargs)
			else : ax.plot(x[tf], y[tf], color=color[i], **kwargs)
	#---------------------------------------------
	else :  
		if (IsType.isnum(z)) : z = z + 0*x
		if (ax is None) : ax = Axes3D(plt.gcf())
		#--------------------
		if ('viewinit' in kwargs.keys()) : 
			try : elev, azim = kwargs['viewinit']
			except : elev = azim = None
			ax.view_init(elev, azim)
			kwargs.pop('viewinit')
		#--------------------
		for i in range(len(color)) : 
			tf = n[(edge[i]<=lcarray)*(lcarray<=edge[i+1])]
			if (tf[0] != 0) : tf[0] -= 1
			if (mec) : ax.plot(x[tf], y[tf], z[tf], color=color[i], mec=color[i], **kwargs)
			else : ax.plot(x[tf], y[tf], z[tf], color=color[i], **kwargs)
	return ax