Exemple #1
0
	def Save( self, hdf5name ) : 
		'''
		hdf5name:
			(1) ==None/'': hdf5name = 'jizhipy.PCA.hdf5'
			(2) ==filename of .hdf5
		'''
		from jizhipy.Basic import Path
		import h5py
		outname = hdf5name
		if(outname in [None, '']): outname ='jizhipy.PCA.hdf5'
		else : 
			if (outname[-5:] != '.hdf5') : outname += '.hdf5'
			outname = Path.AbsPath(outname)
			Path.ExistsPath(outname, True)
			fo = h5py.File(outname, 'w')
		if (self.verbose) : print('    Saving to: ', Path.AbsPath(outname, True))
		self.hdf5name = outname
		keys = self.__dict__.keys()
		fo['class'] = 'jizhipy.PCA'
		fo['stagger'] = stagger
		fo['stagger'].attrs['comment'] = 'y1, y2 = y[:,:-stagger], y[:,stagger:]'
		if ('v' in keys) : 
			fo['eigenvalue'] = v
			fo['eigenvalue'].attrs['comment']='eign values of R matrix'
		if ('P' in keys) : 
			fo['eigenvector'] = P
			fo['eigenvector'].attrs['comment'] = 'each columns are eigen vectors of R matrix'
	#	if ('a' in keys) : 
	#		fo['a'] = a
	#		fo['a'].attrs['comment'] = 'z=P*a, y=(P*a)*rms'
	#	if ('rms' in keys) : 
	#		fo['rms'] = rms
	#		fo['rms'].attrs['comment'] = 'rms of each row of y-map'
		fo.close()
		return self.hdf5name
Exemple #2
0
def Use(which, tf=True):
    '''
	which:
		(1) which='Agg'
		(2) which='tex', tf=True
		(3) which is LatexPackageName
	'''
    import matplotlib as mpl
    which = str(which).lower()
    if (which == 'agg'): mpl.use('Agg')
    elif (which == 'tex'):
        # Some systems,
        # 	set usetex=True , use tex
        # 	set usetex=False, don't use tex
        # But also some systems,
        # 	set usetex=True , raise error
        # 	set usetex=False, use tex!
        # Therefore, set True/False dependenting on your system
        from jizhipy.Basic import Path
        import os
        texcache = Path.AbsPath('~/.cache/matplotlib/tex.cache')
        if (Path.ExistsPath(texcache)):
            os.system('rm -r ' + texcache)
        mpl.rcParams['text.usetex'] = bool(tf)
    #	import matplotlib.pyplot as plt
    #	plt.rc('text', usetex=True)
    else:  # which is packagename
        mpl.rcParams['text.latex.preamble'] = [r'\usepackage{' + which + r'}']
Exemple #3
0
def Fits2Hdf5( inputwhat, hduname=None, verbose=False ) : 
	'''
	inputwhat:
		(1) str, path of .fits
		(2) one of the HDU: inputwhat = fo[i]

	hduname:
		if exists hdu.header['extname'] or inputwhat.name, use them, otherwise, use hduname+str(i)
	'''
	from jizhipy.Basic import Path, IsType
	import h5py, pyfits
	def _Fits2Hdf5( hname, hdu, outhdf5 ) : 
		try : name = hdu.header['extname']
		except : name = hdu.name
		if (name == '') : 
			if (hduname in ['', None]) : name = str(hname)
			else : name = str(hduname)+str(hname)[3:]
		outhdf5[name] = hdu.data  #@#@
		hdr = hdu.header
		keys, values, comments = hdr.keys(), hdr.values(), hdr.comments
		for i in range(len(keys)) : 
			outhdf5[name].attrs[keys[i]] = values[i]
			if (comments[i] != '') : 
				outhdf5[name].attrs[keys[i]+'_comment'] = comments[i]
	#--------------------------------------------------
	if (IsType.isstr(inputwhat)) : 
		inname = Path.AbsPath(inputwhat)
		outname = inname[:-5] + '.hdf5'
		if (verbose) : print('Saving  "'+outname+'"')
		Path.ExistsPath(outname, 'True')
		h = h5py.File(outname, 'w')
		f = pyfits.open(inname)
		for i in range(len(f.info(0))) : 
			_Fits2Hdf5( 'hdu'+str(i), f[i], h )
	#--------------------------------------------------
	else : 
		if (hduname not in ['', None]) : name = str(hduname)
		else : 
			name = inputwhat.name
			if (name == '') : name = 'hdu'
		outname = name + '.hdf5'
		if (verbose) : print('Saving  "'+outname+'"')
		Path.ExistsPath(outname, 'True')
		h = h5py.File(outname, 'w')
		_Fits2Hdf5( hduname, inputwhat, h )
	#--------------------------------------------------
	h.close()
Exemple #4
0
	def Save( self ) : 
		'''
		Save instance to .hdf5
		'''
		from jizhipy.Basic import Path, IsType, Raise
		import numpy as np
		import h5py
		self.outname = str(self.outname)
		if (self.outname[-5:] !='.hdf5') : self.outname += '.hdf5'
		Path.ExistsPath(self.outname, old=True)
		if (self.verbose) : print('jizhipy.ClassHdf5: Saveing to  "'+self.outname+'"')
		fo = h5py.File(self.outname, 'w')
		if (self.value is None or self.keys is None): self.Values()
		fo['classinstance'] = str(type(self.classinstance))
		for i in range(len(self.keys)) : 
			if (self.values[i] is None) : 
				fo[self.keys[i]] = '__None__'
				fo[self.keys[i]].attrs['type'] = 'is None, not str'
			#--------------------------------------------------
			elif (IsType.isdtype(self.values[i])) : 
				fo[self.keys[i]]=np.dtype(self.values[i]).name
				fo[self.keys[i]].attrs['type'] = 'numpy.dtype'
			#--------------------------------------------------
			elif (IsType.ismatrix(self.values[i])) : 
				fo[self.keys[i]] = np.array(self.values[i])
				fo[self.keys[i]].attrs['type'] = 'numpy.matrix'
			#--------------------------------------------------
			elif (IsType.ismaskedarray(self.values[i])) : 
				fo[self.keys[i]] = self.values[i].data
				fo[self.keys[i]+'.mask'] = self.values[i].mask
				fo[self.keys[i]].attrs['type'] = 'numpy.MaskedArray .data'
				fo[self.keys[i]+'.mask'].attrs['type'] = 'numpy.MaskedArray .mask'
			#--------------------------------------------------
			elif (IsType.isdict(self.values[i])) : 
				self._OperaDict(self.values[i])
				try : fo[self.keys[i]] =self.values[i].values() 
				except : fo[self.keys[i]] = str(self.values[i].values())
				fo[self.keys[i]+'.keys'] = self.values[i].keys()
				fo[self.keys[i]].attrs['type']='dict .values()'
				fo[self.keys[i]+'.keys'].attrs['type']='dict .keys()'
				self._OperaDict(self.values[i])
			#--------------------------------------------------
			else : 
				# inside list and tuple, must not contain dict
				try : fo[self.keys[i]] = self.values[i]  # convert to np.ndarray with same dtype, if contains string, will conver to string array
				except : 
					strv = str([self.values[i]])[1:-1]
					Raise(Exception, "fo['"+self.keys[i]+"'] = "+strv)
				if   (IsType.islist(self.values[i])) : 
					fo[self.keys[i]].attrs['type'] = 'list'
				elif (IsType.istuple(self.values[i])) : 
					fo[self.keys[i]].attrs['type'] = 'tuple'
				else : fo[self.keys[i]].attrs['type'] = 'numpy.array'
			#--------------------------------------------------
		fo.flush()
		fo.close()
Exemple #5
0
def Array2FitsImage( arraylist, outname, names=None, keys=None, values=None, comments=None, verbose=False ) : 
	'''
	arraylist:
		(1) isndarray
		(2) list/tuple of ndarray: [array1, array2, ...]
		Otherwise, raise error

		Examples:
			Array2FitsImage( [1,2,3] ), means there are 3 arrays, array1=1, array2=2, array3=3
				FITS can save int/float number to ImageHDU, but will raise error "IOError: Header missing END card." when pyfits.open() it.
			You must convert to
					Array2FitsImage( np.array([1,2,3]), 'test.fits' )
			OR		Array2FitsImage(         [[1,2,3]], 'test.fits' )

	names:
		None | Same shape as arraylist
		Name of each ImageHDU in fo.info()

	keys:
		None | Same shape as arraylist
		(1) arraylist isndarray: keys=['key1', 'key2', ...], list of str
		(2) arraylist is list/tuple of ndarray: [array1, array2, ...], then keys=[arraykey1, arraykey2, ...], arraykey1=['key1', 'key2', ...] (list of list)

	values:
		Same shape as keys

	comments:
		None | same shape as keys even though is ''
	'''
	from jizhipy.Basic import Path, IsType
	import pyfits
	outname = Path.AbsPath(outname)
	if (outname[-5:].lower() != '.fits') : outname += '.fits'
	Path.ExistsPath(outname, True)
	if (verbose) : print('Saving  "'+outname+'"')
	#--------------------------------------------------
	if (IsType.isstr(keys)) :
		keys, values = [keys], [values]
		if (comments is not None) : comments = [comments]
		else : comments = ['']
	#--------------------------------------------------
	if (not IsType.islist(arraylist) and not IsType.istuple(arraylist)) : 
		arraylist = [arraylist]
		if (names is not None) : names = [names]
		keys = [keys for i in range(len(arraylist))]
		values = [values for i in range(len(arraylist))]
		comments = [comments for i in range(len(arraylist))]
	#--------------------------------------------------
	hdulist = pyfits.HDUList()
	for i in range(len(arraylist)) : 
		data = arraylist[i]
		try : name = str(names[i])
		except : name = 'hdu'+str(i)
		if (data.dtype.name[:7] == 'complex') : 
			hdu = pyfits.ImageHDU( data.real )
			hdu.name = name+'REAL'
			hdr = hdu.header
			for j in range(len(keys[i])) : 
				key, value = keys[i][j], values[i][j]
				try : comment = comments[i][j]
				except : comment = ''
				hdr.set(key, value, comment)
			hdulist.append(hdu)  # Real part
			hdu = pyfits.ImageHDU( data.imag )
			hdu.name = name+'IMAG'
			hdr = hdu.header
			try : 
				for j in range(len(keys[i])) : 
					key, value = keys[i][j], values[i][j]
					try : comment = comments[i][j]
					except : comment = ''
					hdr.set(key, value, comment)
			except : pass
			hdulist.append(hdu)  # Imag part
		#--------------------------------------------------
		else : 
			hdu = pyfits.ImageHDU( data )
			hdu.name = name
			hdr = hdu.header
			try : 
				for j in range(len(keys[i])) : 
					key, value = keys[i][j], values[i][j]
					try : comment = comments[i][j]
					except : comment = ''
					hdr.set(key, value, comment)
			except : pass
			hdulist.append(hdu)
	#--------------------------------------------------
	hdulist.writeto( outname )
Exemple #6
0
def Hdf52Fits( inputwhat, hduname='', verbose=False ) : 
	'''
	inputwhat:
		(1) str, path of .hdf5
		(2) one of the dataset: inputwhat = fo[keys[i]]
	'''
	from jizhipy.Basic import Path, IsType
	import numpy as np
	import h5py, pyfits
	def _Hdf52Fits( dataset, hduname='' ) : 
		if (hduname in ['', None]) : 
			name = str(dataset.name)
			name = name[name.rfind('/')+1:]
		else : name = str(hduname)
		attrs = dataset.attrs.items()
		data  = dataset.value
		hdulist = []
		try : 
			if (data.dtype.name[:7] == 'complex') : 
				hdu = pyfits.ImageHDU( data.real )
				hdu.name = name+'REAL'
				hdr = hdu.header
				for i in range(len(attrs)) : 
					hdr[str(attrs[i][0])] = attrs[i][1]
				hdulist.append(hdu)  #@#@
				hdu = pyfits.ImageHDU( data.imag )
				hdu.name = name+'IMAG'
				hdr = hdu.header
				for i in range(len(attrs)) : 
					hdr[str(attrs[i][0])] = attrs[i][1]
				hdulist.append(hdu)  #@#@
			else : raise
		except : 
			if (IsType.isndarray(data) or IsType.islist(data) or IsType.istuple(data)) : 
				try : hdu = pyfits.ImageHDU( data )
				except : hdu = pyfits.ImageHDU( np.array(data, np.float32) )
				hdu.name = name
				hdr = hdu.header
				for i in range(len(attrs)) : 
					hdr[str(attrs[i][0])[:8]] = attrs[i][1]
				hdulist.append(hdu)
			else : other.header[name[:8]] = data
		return hdulist
	#--------------------------------------------------
	hdulist = pyfits.HDUList()
	other = pyfits.ImageHDU([])
	other.name = 'other'
	hdrother = other.header.keys()
	if (IsType.isstr(inputwhat)) : 
		inname = Path.AbsPath(inputwhat)
		outname = inname[:-5] + '.fits'
		if (verbose) : print('Saving  "'+outname+'"')
		fo = h5py.File(inname, 'r')
		keys = fo.keys()
		for i in range(len(keys)) : 
			hdu = _Hdf52Fits( fo[keys[i]], hduname )
			for j in range(len(hdu)) : hdulist.append( hdu[j] )
	#--------------------------------------------------
	else : 
		if (hduname in ['', None]) : 
			name = str(inputwhat.name)
			name = name[name.rfind('/')+1:]
		else : name = str(hduname)
		outname = name + '.fits'
		if (verbose) : print('Saving  "'+outname+'"')
		hdu = _Hdf52Fits( inputwhat, hduname )
		for j in range(len(hdu)) : hdulist.append( hdu[j] )
	#--------------------------------------------------
	hdr = other.header.keys()
	if (hdr != hdrother) : hdulist.append(other)
	Path.ExistsPath(outname, 'True')
	hdulist.writeto( outname )
	hdulist.close()
Exemple #7
0
    def __init__(self,
                 freq_unit='MHz',
                 unit='TCMB',
                 resolution='hi',
                 pygsmpath='gsm_components.hdf5'):
        """ Global sky model (GSM) class for generating sky models.

		Upon initialization, the map PCA data are loaded into memory and interpolation
		functions are pre-computed.

		Parameters
		----------
		freq_unit: 'Hz', 'MHz', or 'GHz'
			Unit of frequency. Defaults to 'MHz'.

		unit: 'MJysr', 'TCMB', 'TRJ'
			Unit of output data. MJy/Steradian, T_CMB in Kelvin, or T_RJ.

		resolution: 'hi' or 'low'
			Resolution of output map. Either 300 arcmin (low) or 24 arcmin (hi).
			For frequencies under 10 GHz, output is 48 arcmin.

		Notes
		-----
		"""
        import numpy as np
        import h5py
        if (pygsmpath is None): pygsmpath = 'gsm2016_components.hdf5'
        if (not Path.ExistsPath(pygsmpath)):
            pygsmpath = Path.jizhipyPath(
                'jizhipy_tool/pyGSM_component/gsm2016_components.hdf5')
            if (not Path.ExistsPath(pygsmpath)):
                Raise(Exception, 'pygsmpath="' + pygsmpath + '" NOT exists')
        self.GSM2016_FILEPATH = pygsmpath
        #----------------------------------------
        if unit not in ['MJysr', 'TCMB', 'TRJ']:
            raise RuntimeError(
                "UNIT ERROR: %s not supported. Only MJysr, TCMB, TRJ are allowed."
                % unit)

        if resolution.lower() in ('hi', 'high', 'h'):
            resolution = 'hi'
        elif resolution.lower() in ('low', 'lo', 'l'):
            resolution = 'low'
        else:
            raise RuntimeError(
                "RESOLUTION ERROR: Must be either hi or low, not %s" %
                resolution)

        self.h5 = h5py.File(self.GSM2016_FILEPATH, "r")
        self.freq_unit = freq_unit
        self.unit = unit
        self.resolution = resolution

        # Map data to load
        labels = ['Synchrotron', 'CMB', 'HI', 'Dust1', 'Dust2', 'Free-Free']
        self.n_comp = len(labels)
        self.map_ni_hr = np.array(
            [self.h5['highres_%s_map' % lb][:] for lb in labels])
        self.map_ni_lr = self.h5['lowres_maps']
        self.spec_nf = self.h5['spectra'][:]

        self.generated_map_data = None
        self.generated_map_freqs = None
Exemple #8
0
    def __init__(self,
                 freq_unit='MHz',
                 basemap='haslam',
                 interpolation='pchip',
                 pygsmpath='gsm_components.hdf5'):
        """
		Global sky model (GSM) class for generating sky models.

		Upon initialization, the map PCA data are loaded into memory and interpolation
		functions are pre-computed.

		Parameters
		----------
		freq_unit: 'Hz', 'MHz', or 'GHz'
			Unit of frequency. Defaults to 'MHz'.

		gsm_version: 'haslam', 'wmap' or '5deg'
			GSM version to generate. The 5deg map has 5.1 degree resolution.
			This is a synthesized map made of all the maps considered in
			the de Oliveira-Costa et. al. paper
			At frequencies below 1GHz, haslam is preferred; you get higher
			resolution (1 degree) by locking to the Haslam 408 MHz map.
			At CMB frequencies, it is best to lock to the WMAP 23 GHz
			map, which is presented denoised with 2 degree resolution.

		interpolation: 'cubic' or 'pchip'
			Choose whether to use cubic spline interpolation or
			piecewise cubic hermitian interpolating polynomial (PCHIP).
			PCHIP is designed to never locally overshoot data, whereas
			splines are designed to have smooth first and second derivatives.

		Notes
		-----
		The scipy `interp1d` function does not allow one to explicitly
		set second derivatives to zero at the endpoints, as is done in
		the original GSM. As such, results will differ. Further, we default
		to use PCHIP interpolation.
		"""
        import h5py
        from jizhipy.Basic import Path
        if (pygsmpath is None): pygsmpath = 'gsm_components.hdf5'
        if (not Path.ExistsPath(pygsmpath)):
            pygsmpath = Path.jizhipyPath(
                'jizhipy_tool/pyGSM_component/gsm_components.hdf5')
            if (not Path.ExistsPath(pygsmpath)):
                Raise(Exception, 'pygsmpath="' + pygsmpath + '" NOT exists')
        self.GSM_FILEPATH = pygsmpath
        #----------------------------------------
        try:
            assert basemap in {'5deg', 'wmap', 'haslam'}
        except AssertionError:
            raise RuntimeError(
                "GSM basemap unknown: %s. Choose '5deg', 'haslam' or 'wmap'" %
                basemap)

        try:
            assert interpolation in {'cubic', 'pchip'}
        except AssertionError:
            raise RuntimeError(
                "Interpolation must be set to either 'cubic' or 'pchip'")

        self.h5 = h5py.File(self.GSM_FILEPATH, "r")
        self.basemap = basemap
        self.interpolation_method = interpolation
        self.freq_unit = freq_unit

        self.pca_map_data = None
        self.interp_comps = None
        self.update_interpolants()

        self.generated_map_data = None
        self.generated_map_freqs = None
Exemple #9
0
def CrawlerBaiduWenku(website,
                      page50,
                      outdir,
                      outname,
                      browserDriverPath,
                      logger='INFO',
                      timeout=5):
    '''
	browserDriverPath:
		How to download and use browserDriver ?
		Using Chrome for example. 
		(1) Check the Chrome version: 
			input  chrome://version  on the website bar
			You can see something like:
			Google Chrome	69.0.3497.92
			It means that the version is 69
		(2) Open website  http://chromedriver.storage.googleapis.com/index.html
			There are some documents from 2.0 to 2.9
			Open one of them, for example 2.46
			Then open notes.txt, then you will see:
				Supports Chrome v......
			Find that matches your Chrome, here 2.40 to 2.44 are OK for Chrome 69
			Then go the document 2.44, download the chromedriver for your system (linux, mac, win)
		(3) Unzip the downloaded file, then you will obtain an application named "chromedriver"
		(4) @browserDriverPath is the path of this "chromedriver"

	website:
		The url/website/link of the document on the wenku.baidu.com
		e.g. the website of document "人脸检测与识别关键技术研究" is "https://wenku.baidu.com/view/f267c923dd36a32d737581df.html?sxts=1552644845367"

	page50:
		For a thesis or some document which are very long: exceed 50 pages, some times default website is only for the front 50 page, for the next 50 pages, the website is 
		https://wenku.baidu.com/view/f267c923dd36a32d737581df.html?sxts=1552644845367&pn=51
			(added "&pn=51" behind the normal website)
		The parameter @page50 here is [int]:
			page50=False: only crawl @website is enough
			page50=51: crawl @website and @website+'&pn=51'
			page50=101: crawl @website, @website+'&pn=51', @website+'&pn=101'
		NOTE THAT &pn= is only 51, 101, 151, 201, ...

	outdir:
		[str] path of the output directory
	outname:
		[str] main_name of the picture without format
		NOTE THAT outname[-1] != '_'

	logger:
		=False (not print) | ='DEBUG' (print all) | 'INFo' (print count)

	timeout:
		How many seconds to be timeout (Default timeout=3)
	'''
    from selenium import webdriver
    from selenium.webdriver.common.by import By
    from selenium.webdriver.support import expected_conditions as EC
    from selenium.webdriver.support.wait import WebDriverWait
    import time, re, requests
    from jizhipy.Basic import Logger, Path
    #----------------------------------------
    # Check arguments
    browserDriverPath = Path.AbsPath(browserDriverPath)
    Path.ExistsPath(browserDriverPath, stop=True)
    try:
        page50 = int(page50)
    except:
        page50 = False
    if (page50 not in range(51, 10000, 50)): page50 = ['']
    else: page50 = [''] + range(51, page50 + 2, 50)
    if (outdir[-1] != '/'): outdir += '/'
    outdirAbs = Path.AbsPath(outdir)
    Path.ExistsPath(outdirAbs, mkdir=True)
    outname = str(outname)
    if (outname[-1] == '_'): outname = outname[:-1]
    try:
        timeout = float(timeout)
    except:
        timeout = 5
    logger = Logger(logger, True)
    #----------------------------------------
    # __init__
    browser = webdriver.Chrome(browserDriverPath)
    wait = WebDriverWait(browser, timeout)
    # 匹配url(网址)信息的模板,url\("(.*?)"\) 相当于url("..."),其中"..."就是用来打开图片的网址
    pattern = re.compile('.*?url\("(.*?)"\)', re.S)
    #----------------------------------------
    count = 0
    for p5 in page50:
        # Get the website
        if (p5 != ''): p5 = '&pn=' + str(p5)
        browser.get(website + p5)
        # 定位到:鼠标'banner-more-btn'
        submit = wait.until(
            EC.presence_of_element_located((By.CLASS_NAME, 'banner-more-btn')))
        # 滑轮滑倒看得到鼠标的位置,不然鼠标会点不到
        browser.execute_script("arguments[0].scrollIntoViewIfNeeded(true);",
                               submit)
        # 让爬虫点击一下鼠标
        submit.click()
        # 定位到第一个节点
        elem = wait.until(
            EC.presence_of_element_located(
                (By.ID, 'reader-container-inner-1')))
        # 获取图片link
        for i in elem.find_elements_by_class_name('bd'):
            count += 1
            try:
                browser.execute_script(
                    "arguments[0].scrollIntoViewIfNeeded(true);", i)
                #	time.sleep(0.6)	#@#@
                # 定位到存放图片信息的节点
                n = i.find_element_by_class_name('reader-pic-item')
                js = n.get_attribute('style')
                # findall,用模板匹配url(网址)
                href = pattern.findall(js)
                link = href[0]
                # 保存图片
                html = requests.get(link).content
                stri = (4 - len(str(count))) * '0' + str(count)
                imageName = outdirAbs + outname + '_' + stri + '.jpg'
                fo = open(imageName, 'wb')
                fo.write(html)
                fo.close()
                print(count)
            except:
                pass
Exemple #10
0
def LAB(fwhm,
        freqmin,
        freqmax,
        lon=None,
        lat=None,
        nside=None,
        coordsys='Galactic',
        labpath='labh.fits',
        verbose=True):
    '''
	fwhm:
		[degree]
		fwhm==None: don't smooth the map

	freqmin, freqmax:
		[MHz]
		Average from freqmin (include) to freqmax (include)
		LAB freq resol: 0.00488281 MHz
		Must be isnum, NOT list
		If freqmax=None, then freqmax=freqmin

	lon, lat:
		[degree]
		lon: RA  | l
		lat: Dec | b
		Must can be broadcast
		Use lon, lat first, otherwise, use nside

	nside:
		Healpix full sky map instead of lon, lat

	coordsys:
		'Equatorial' | 'Galactic'

	labpath:
		str, where is the file "labh.fits"


	LAB: [1418.2329, 1422.5786] MHz
	'''
    import pyfits
    import healpy as hp
    import numpy as np
    from jizhipy.Array import Asarray
    from jizhipy.Basic import Raise, IsType, Path
    from jizhipy.Astro import DopplerEffect
    from jizhipy.Transform import CoordTrans
    if (freqmin is not None):
        freqmin = Asarray(freqmin).flatten()
        if (freqmin.size != 1):
            Raise(
                Exception, 'freqmin must isnum, but now freqmin.size=' +
                str(freqmin.size))
        freqmin = freqmin[0]
    if (freqmax is not None):
        freqmax = Asarray(freqmax)
        if (freqmax.size != 1):
            Raise(
                Exception, 'freqmax must isnum, but now freqmax.size=' +
                str(freqmax.size))
        freqmax = freqmax[0]
    if (freqmin is not None and freqmax is None):
        freqmax = freqmin
    elif (freqmin is None and freqmax is not None):
        freqmin = freqmax
    elif (freqmin is None and freqmax is None):
        #	if (verboase) : Raise(Warning, 'freqmin = freqmax = None')
        if (verboase): print('Warning: jp.LAB(), freqmin = freqmax = None')
        return np.array(0)

    if (freqmin < 1418.2329 or freqmax > 1422.5786):
        if (verbose):
            print(
                'Warning: jp.LAB(), freqmin=%.3f, freqmax=%.3f out of [1418.2329, 1422.5786] MHz'
                % (freqmin, freqmax))
        return np.array(0)
    #--------------------------------------------------

    if (labpath is None): labpath = 'labh.fits'
    if (not Path.ExistsPath(labpath)):
        labpath = Path.jizhipyPath('jizhipy_tool/labh.fits')
        if (not Path.ExistsPath(labpath)):
            Raise(Exception, 'labath="' + labpath + '" NOT exists')
    fo = pyfits.open(labpath)
    #--------------------------------------------------

    if (lon is not None and lat is not None):
        if (np.sum((lat < -90) + (lat > 90)) > 0):
            Raise(Exception, 'lat out of [-90, 90] degree')
        nside = None
    else:
        nside, islist = int(nside), True
    #--------------------------------------------------

    hdr = fo[0].header
    bscale, bzero, blank = hdr['BSCALE_'], hdr['BZERO_'], hdr['BLANK_']
    freq0 = hdr['FREQ0'] * 1e-6  # MHz
    Nlon, Nlat, Nfreq = hdr['NAXIS1'], hdr['NAXIS2'], hdr['NAXIS3']
    vmin, dv = hdr['CRVAL3'] / 1000., hdr['CDELT3'] / 1000.  # km/s
    #--------------------------------------------------

    vlist = np.arange(vmin, vmin + Nfreq * dv, dv)
    freqlist = freq0 + DopplerEffect(freq0, None, vlist)
    df = freqlist[Nfreq / 2] - freqlist[Nfreq / 2 - 1]
    if (freqmin < freqlist.min() or freqmax > freqlist.max()):
        #	if (verbose) : Raise(Warning, 'freqmin=%.3f, freqmax=%.3f out of [%.4f, %.4f] MHz' % (freqmin, freqmax, freqlist.min(), freqlist.max()))
        if (verbose):
            print(
                'Warning: jp.LAB(), freqmin=%.3f, freqmax=%.3f out of [%.4f, %.4f] MHz'
                % (freqmin, freqmax, freqlist.min(), freqlist.max()))
        return np.array(0)

    nfreqmin = abs(freqlist - freqmin)
    nfreqmin = np.where(nfreqmin == nfreqmin.min())[0][0]
    nfreqmax = abs(freqlist - freqmax)
    nfreqmax = np.where(nfreqmax == nfreqmax.min())[0][0]
    nfreqmin, nfreqmax = np.sort([nfreqmin, nfreqmax])
    nfreq = np.arange(nfreqmin, nfreqmax + 1)
    #--------------------------------------------------

    # Take healpix map in Galactic
    lab = fo[0].data[nfreq] + 0
    tf = (lab == blank)
    lab = np.float32(lab * bscale + bzero)
    lab[tf] = np.nan
    lab = np.ma.MaskedArray(lab, tf)
    lab = np.float32(lab.mean(0).data)  # (361, 721)
    del tf
    #--------------------------------------------------

    nsidelab = 256  # 512
    latlab, lonlab = hp.pix2ang(nsidelab, np.arange(12 * nsidelab**2))
    latlab, lonlab = 90 - latlab * 180 / np.pi, lonlab * 180 / np.pi
    lonlab %= 360
    lonlab[lonlab > 180] = lonlab[lonlab > 180] - 360
    nlon = ((lonlab - 180) / -0.5).round().astype(int)
    nlon[nlon >= Nlon] = Nlon - 1
    del lonlab
    nlat = ((latlab + 90) / 0.5).round().astype(int)
    nlat[nlat >= Nlat] = Nlat - 1
    del latlab
    npix = nlat * Nlon + nlon
    del nlat, nlon
    lab = lab.flatten()[npix]  # healpix map
    del npix
    if (fwhm not in [0, None] and fwhm > 0.5):
        fwhm = (fwhm**2 - 0.5**2)**0.5
        lab = np.float32(
            hp.smoothing(lab, fwhm * np.pi / 180,
                         verbose=False))  # hp.smoothing() is slow !
    #--------------------------------------------------

    coordsys = str(coordsys).lower()
    if (nside is None):
        islist = False if (IsType.isnum(lon + lat)) else True
        lon, lat = lon + lat * 0, lon * 0 + lat  # same shape
        lon %= 360
        lon, lat = CoordTrans.Celestial(lon * np.pi / 180, lat * np.pi / 180,
                                        coordsys, 'Galactic')  # rad
        npix = hp.ang2pix(nsidelab, np.pi / 2 - lat, lon)
        del lon, lat
        lab = lab[npix]
    else:
        if (nside != nsidelab): lab = hp.ud_grade(lab, nside)
        if (coordsys != 'galactic'):
            lab = CoordTrans.CelestialHealpix(lab, 'RING', 'Galactic',
                                              coordsys)[0]
    lab = np.float32(lab)
    if (not islist): lab = lab[0]
    return lab
Exemple #11
0
def GSM2016(freq=None,
            outname=None,
            save=False,
            nside=None,
            coordsys='Galactic',
            unit='K',
            lowresol=False,
            dtype=None,
            verbose=False,
            rmnegative=False,
            rmsource=False,
            gsm2016path='GSM2016_data/',
            example=False):
    '''
	An improved model of diffuse galactic radio emission from 10 MHz to 5 THz; arxiv:1605.04920; 2017MNRAS.464.3486Z

	Already remove CMB: -2.726

	example:
		True | False
		==True: read and return 'gsm2016_example.hdf5'
			jp.GSM2016(example=True)
			Only diffuse map, had remove CMB, 408MHz, K, nside=512

	compname = ['Total', 'Synchrotron', 'CMB', 'HI', 'Dust1', 'Dust2', 'Free-Free']  # 'Dust1'=cold dust, 'Dust2'=warm dust

	freq:
		in MHz
		Must be one value, int | float, NOT list

	outname:
		Force to use .hdf5 format
		(1) ==str: complete output name
		(2) else: outname = 'gsm2016_'+strfreq+'.hdf5'

	save:
		==False: 
			    exists, read,     NOT save
			NOT exists, generate, NOT save
		==True: 
			    exists, generate, save
			NOT exists, generate, save
		==None: 
			    exists, read,     NOT save
			NOT exists, generate,     save

	lowresol:
		True | False
		(1) ==False:
				nside=1024
				*  freq< 10GHz, force resol=56arcmin
				** freq<=10GHz, force resol=24arcmin
		(2) ==False
				nside=64, resol=5deg=300arcmin
				Use './data/lowres_maps.txt'

	unit:
		'K'/'Trj' | 'Tcmb' | 'MJysr'

	dtype:
		'float64' | 'float32'

	nside:
		Default nside=1024

	rmnegative:
		reset negative
		True | False

	rmsource:
		remove sources from the output map
		0/False | 1 | 2 | 3 | 4
		0/False: NOT remove sources
		1: remove CygA, CasA, Crab
		2: remove sources outside center plane
		3: remove sources inside center plane

	return:
		gsm.shape = (6, 12*nside**2)

	compname = ['Total', 'Synchrotron', 'CMB', 'HI', 'Dust1', 'Dust2', 'Free-Free']  # 'Dust1'=cold dust, 'Dust2'=warm dust
	'''
    import numpy as np
    import healpy as hp
    import h5py
    from jizhipy.Astro import RemoveSource
    from jizhipy.Basic import Raise, SysFrame, Mkdir, Path, Time, IsType
    if (verbose): print('jizhipy.GSM2016:')
    if (nside is not None):
        n = int(round(np.log(nside) / np.log(2)))
        nside = 2**n
    else:
        nside = 512
    coordsys = str(coordsys)
    if (verbose):
        print('    freq =', freq, 'MHz')
        print('    coordsys =', coordsys)
        print('    nside =', nside)
    #----------------------------------------

    if (gsm2016path is None): gsm2016path = 'GSM2016_data/'
    if (not Path.ExistsPath(gsm2016path)):
        gsm2016path = Path.jizhipyPath('jizhipy_tool/GSM2016_data/')
        if (not Path.ExistsPath(gsm2016path)):
            Raise(Exception, 'gsmp2016path="' + gsm2016path + '" NOT exists')
    fdir = Path.AbsPath(gsm2016path)
    #----------------------------------------

    if (example):
        if (verbose): print('    Use "gsm2016_example.hdf5"')
        fo = h5py.File(fdir + 'gsm2016_example.hdf5', 'r')
        gsm = fo['gsm2016'].value
        fo.close()

        # ud_grade to nside
        if (nside is not None and gsm[0].size != 12 * nside**2):
            gsm2 = []
            for i in range(len(gsm)):
                gsm2.append(hp.ud_grade(gsm[i], nside))
            gsm = np.array(gsm2)

        if (coordsys.lower() != 'galactic'):
            for i in range(len(gsm)):
                gsm[i] = CoordTrans.CelestialHealpix(gsm[i], 'ring',
                                                     'Galactic', coordsys)[0]
        return gsm
    #---------------------------------------------
    #---------------------------------------------

    freq, unit, lowresol, verbose, rmnegative, rmsource = float(freq), str(
        unit).lower(), bool(lowresol), bool(verbose), bool(rmnegative), int(
            rmsource)
    vb = '123' if (verbose) else False
    if (verbose):
        print(
            '    Total, Synchrotron, CMB, HI, Cold dust, Warm dust, Free-Free')
    if (freq <= 0):
        print('freq = ' + str(freq) + ' <=0')
        exit()
    dtype = np.dtype(dtype)
    #---------------------------------------------
    #---------------------------------------------

    if (IsType.isstr(outname)): outname = str(outname)
    else:
        strfreq = str(freq).split('.')
        while (strfreq[1] != '' and strfreq[1][-1] == '0'):
            strfreq[1] = strfreq[1][:-1]
        if (strfreq[1] == ''): strfreq = strfreq[0]
        else: strfreq = strfreq[0] + '.' + strfreq[1]
        outname = 'gsm2016_' + strfreq + '.hdf5'
    if (save is not False and '/' in outname):
        for i in range(len(outname) - 1, -1, -1):
            if (outname[i] == '/'): break
        Mkdir(outname[:i + 1])
    #--------------------------------------------------
    #--------------------------------------------------

    freq /= 1000.  # GHz
    kB, C, h, T = 1.38065e-23, 2.99792e8, 6.62607e-34, 2.725
    hoverk = h / kB

    def K_CMB2MJysr(K_CMB, nu):  # in Kelvin and Hz
        B_nu = 2 * (h * nu) * (nu / C)**2 / (np.exp(hoverk * nu / T) - 1)
        conversion_factor = (B_nu * C / nu / T)**2 / 2 * np.exp(
            hoverk * nu / T) / kB
        return K_CMB * conversion_factor * 1e20  # 1e-26 for Jy | 1e6 for MJy

    def K_RJ2MJysr(K_RJ, nu):  # in Kelvin and Hz
        conversion_factor = 2 * (nu / C)**2 * kB
        return K_RJ * conversion_factor * 1e20  # 1e-26 for Jy | 1e6 for MJy

    mjysr2k = 1. / K_RJ2MJysr(1., 1e9 * freq)
    if (unit == 'tcmb'):
        unit = 'Tcmb'
        conversion = 1. / K_CMB2MJysr(1., 1e9 * freq)
    elif (unit == 'mjysr'):
        unit = 'MJysr'
        conversion = 1.
        if (verbose):
            print(('    Unit Conversion at %.3f MHz: 1 MJysr == %f ' + unit) %
                  (freq * 1000, mjysr2k))
    else:  # (unit in ['k', 'trj']) :
        unit = 'K'
        conversion = mjysr2k
    #--------------------------------------------------
    #--------------------------------------------------

    exist = True if (Path.ExistsPath(outname)) else False
    #	if (exist and save is not True) :
    if (exist):
        try:
            fo = h5py.File(outname, 'r')
            gsm = fo['gsm2016'].value
            fo.close()
            if (verbose): print('    Exists: ', outname)
            return gsm
        except:
            pass
    #--------------------------------------------------

    exist = False
    if (save is not False): save = True

    if (not exist):  # generate
        spec_nf = np.loadtxt(fdir + 'spectra.txt')
        nfreq = spec_nf.shape[1]
        left_index = -1
        for i in range(nfreq - 1):
            if (freq >= spec_nf[0, i] and freq <= spec_nf[0, i + 1]):
                left_index = i
                break
        if (left_index < 0):
            print(
                "FREQUENCY ERROR: %.3f MHz is outside supported frequency range of %.3f MHz to %.3f MHz."
                % (freq * 1000, spec_nf[0, 0] * 1000, spec_nf[0, -1] * 1000))
            exit()
        #--------------------------------------------------
        # compname must be this order, do NOT modify
        compname = ['Synchrotron', 'CMB', 'HI', 'Dust1', 'Dust2',
                    'Free-Free']  # 'Dust1'=cold dust, 'Dust2'=warm dust
        #--------------------------------------------------
        if (lowresol):
            nside_data, op_resolution = 64, 300.
        else:
            nside_data = 1024  # forced because of *.bin files
            op_resolution = 56. if (freq < 10) else 24.
        if (not lowresol):
            gsm = np.array([
                np.fromfile(fdir + 'highres_' + cname + '_map.bin',
                            dtype='float32') for cname in compname
            ])
        else:
            gsm = np.loadtxt(fdir + 'lowres_maps.txt')
        #--------------------------------------------------
        interp_spec_nf = np.copy(spec_nf)
        interp_spec_nf[0:2] = np.log10(interp_spec_nf[0:2])
        x1 = interp_spec_nf[0, left_index]
        x2 = interp_spec_nf[0, left_index + 1]
        y1 = interp_spec_nf[1:, left_index]
        y2 = interp_spec_nf[1:, left_index + 1]
        x = np.log10(freq)
        interpolated_vals = (x * (y2 - y1) + x2 * y1 - x1 * y2) / (x2 - x1)
        gsm = 10.**interpolated_vals[0] * interpolated_vals[1:, None] * gsm
        gsm = gsm * conversion
    #--------------------------------------------------
    if (len(gsm.shape) == 1): gsm = gsm[None, :]
    else: gsm = np.concatenate([gsm.sum(0)[None, :], gsm], 0)
    #--------------------------------------------------
    #--------------------------------------------------

    # generate is nest, convert to ring
    # First ud_grade so that faster
    for i in range(len(gsm)):
        gsm[i] = hp.reorder(gsm[i], n2r=True)

    # ud_grade to nside
    if (gsm[0].size != 12 * nside**2):
        gsm2 = []
        for i in range(len(gsm)):
            gsm2.append(hp.ud_grade(gsm[i], nside))
        gsm = np.array(gsm2)
    #--------------------------------------------------
    #--------------------------------------------------

    # remove negative value in the hpmaps
    for i in range(len(gsm)):
        if (not rmnegative and i != 0): break
        tf = gsm[i] < 0
        if (tf[tf].size == 0): continue
        g = gsm[i].copy()
        #	g[tf] = g.mean()
        g[tf] = g[g > 0].min()
        g = hp.smoothing(g, np.pi / 180 * 10, verbose=False)
        gsm[i][tf] = g[tf]
    #--------------------------------------------------
    #--------------------------------------------------

    casa = np.array([[(111.44, -1.37), (93.89, 2.37)]])  # fwhm=7
    casa1 = np.array([[(118.12, 4.78), (121.83, 1.09)]])
    cyga = np.array([[(81, 2), (26.33, 8.38)]])  # fwhm=7
    cyga1 = np.array([[(84.9, -0.55), (71.8, 0.4)]])  # fwhm=3
    cyga2 = np.array([[(76.6, 0.4), (71.8, 0.4)]])  # fwhm=5
    cyga3 = np.array([[(88.82, 4.69), (88.69, 2)]])  # fwhm=3
    crab = np.array([[(-96, -2), (26.33, 8.38)]])  # fwhm=4.5
    crab1 = np.array([[(-91.82, -1), (26.33, 8.38)]])  # fwhm=3
    crab2 = np.array([[(-99.31, -3.43), (26.33, 8.38)]])  # fwhm=3
    lb1 = np.concatenate(
        [casa, casa1, cyga, crab, cyga1, cyga2, cyga3, crab1, crab2], 0)
    fwhm1 = np.array([7, 3, 7, 4.5, 3, 5, 3, 2, 2])
    lb10, lb11 = lb1[:, 0], lb1[:, 1]
    #--------------------------------------------------

    other = np.array([[(-153.41, -1.91), (-163.58, -9.29)],
                      [(-170.31, 2.08), (-163.58, -9.29)],
                      [(-175.26, -5.88), (-163.58, -9.29)],
                      [(-150.64, -19.38), (-157, -20)],
                      [(-153.34, -16.39), (-157, -20)],
                      [(133.73, 1.07), (126.89, 0.83)],
                      [(160.4, 2.78), (157.61, -1.24)],
                      [(73.2, -9.06), (68.38, -7.56)],
                      [(63.39, -5.98), (68.38, -7.56)]])
    fwhm2 = np.array([4, 4, 4, 1, 1, 2, 2, 3, 2])
    lb20, lb21 = other[:, 0], other[:, 1]
    #--------------------------------------------------

    center = np.array([[(-54.49, 0.08), (-58.03, -0.04)],
                       [(-61.38, -0.18), (-58.03, -0.04)],
                       [(-69.23, -0.59), (-58.03, -0.04)],
                       [(-72.15, -0.73), (-58.03, -0.04)],
                       [(-75.88, -0.42), (-58.03, -0.04)],
                       [(-77.63, -1.2), (-58.03, -0.04)],
                       [(-65.21, -1.2), (-58.03, -0.04)],
                       [(-63.1, 9.8), (-60.6, 8.89)],
                       [(-6.93, 16.9), (-9.35, 16.06)]])
    fwhm3 = np.array([2, 2, 3, 3, 2, 2, 2, 2, 2])
    lb30, lb31 = center[:, 0], center[:, 1]

    if (rmsource in [1, 2, 3, 4]):
        if (rmsource == 4):
            lb0 = np.concatenate([lb30, lb20, lb10], 0)
            lb1 = np.concatenate([lb31, lb21, lb11], 0)
            fwhm = np.concatenate([fwhm3, fwhm2, fwhm1])
        elif (rmsource == 1):
            lb0, lb1, fwhm = lb10, lb11, fwhm1
        elif (rmsource == 2):
            lb0, lb1, fwhm = lb20, lb21, fwhm2
        elif (rmsource == 3):
            lb0, lb1, fwhm = lb30, lb31, fwhm3
        gsm[0] = np.log10(gsm[0])
        times, same, onebyone = 1, False, True
        pix, revalue = RemoveSource(gsm[0], lb0, lb1, fwhm, times, same,
                                    onebyone, vb)
        gsm[0][pix] = revalue
        gsm[0] = hp.smoothing(gsm[0], np.pi / 180, verbose=False)
        gsm[0] = 10.**gsm[0]

    gsm = gsm.astype(dtype)
    #--------------------------------------------------
    #--------------------------------------------------

    if (coordsys.lower() != 'galactic'):
        for i in range(len(gsm)):
            gsm[i] = CoordTrans.CelestialHealpix(gsm[i], 'ring', 'Galactic',
                                                 coordsys)[0]

    if (save):
        if (verbose): print('    Saving to: ', outname)
        Path.ExistsPath(outname, old=True)
        fo = h5py.File(outname, 'w')
        fo['gsm2016'] = gsm
        fo['gsm2016'].attrs['freq'] = freq * 1000
        fo['gsm2016'].attrs['unit'] = unit
        fo['gsm2016'].attrs['MJysr2K'] = mjysr2k
        fo['gsm2016'].attrs['lowresol'] = int(lowresol)
        fo['gsm2016'].attrs['nside'] = nside
        fo['gsm2016'].attrs['pixtype'] = 'healpix'
        fo['gsm2016'].attrs['ordering'] = 'ring'
        fo['gsm2016'].attrs['coordsys'] = 'Galactic'
        fo['gsm2016'].attrs['rmnegative'] = int(rmnegative)
        fo['gsm2016'].attrs['rmsource'] = int(rmsource)
        fo['gsm2016'].attrs['creadate'] = Time(0)
        fo.close()
    return gsm
Exemple #12
0
def ObjectDetector(image,
                   framework,
                   modelPath,
                   txtPath=None,
                   labelMap=None,
                   minConfidence=None,
                   scaleFactor=None,
                   size=None,
                   mean=None,
                   crop=False,
                   **kwargs):
    '''
	Parameters
	----------
	image:
		Must be 3D/2D array/matrix, NOT path

	framework:
		'Tensorflow' | 'Caffe' | 'Torch' | 'Darknet' | 'ONNX' | 'ModelOptimizer' | 'Haar' (OpenCV .xml)

	modelPath, txtPath:
		(1) for Tensorflow: 
			* modelPath: path of .pb (binary frozen graph) file with binary protobuf description of the network architecture
			* txtPath: path of .pbtxt file that contains text graph definition in protobuf format
		(2) for Caffe:
			* modelPath: path of .caffemodel file with learned network
			* txtPath: path of .prototxt file with text description of the network architecture
		(3) for OpenCV.xml:
			* modelPath: path of .xml file
			* txtPath: set txtPath=None

	minConfidence:
		(1) for NOT Haar: 
			* Detect objects with confidence >= minConfidence
		(2) for Haar: 
			* minConfidence=minNeighbors, if a candidate target is consist of >= minNeighbors windows, it may be a real target, otherwise, drop it

	scaleFactor:
		(1) for NOT Haar:
			* Use what image to train this model(network)
			* scaleFactor=1: use original image range 0~255
			* scaleFactor=1/255: use normalized image range 0~1
			* For Caffe, use scaleFactor=1
			* For Tensorflow, use scaleFactor=1/127.5
			* (effect: image *= scaleFactor)
		(2) for Haar:
			* scaleFactor = NextWindowSize / CurrentWindowSize
			(default scaleFactor=1.1)

	size:
		(1) for NOT Haar:
			* size=(height, width) for output image
		(2) for Haar:
			* size=flags, usually use 3 cases:
				flags=0 (default)
				flags=cv2.CV_HAAR_DO_CANNY_PRUNING
				flags=cv2.CASCADE_SCALE_IMAGE

	mean:
		(only for NOT Haar)
    	scalar with mean values which are subtracted from channels. Values are intended to be in (mean-R, mean-G, mean-B) order if @p image is BGR (NOT RGB) and @p swapRB=True

	swapRB:
		(only for NOT Haar)
		True/False, swap R(red) and B(blue) or not

	crop:
		(only for NOT Haar)
		True/False, crop the image or not after resize
		@p size is used to resize @p image:
			(1) crop=False: resize directly and don't preserve aspect ratio
			(2) crop=True: first, resize @p image preserving aspect ratio, so that @p image.shape >= size; then, crop the longer axis from the image center, make @p image.shape==size
	'''
    from jizhipy.Basic import Path, Raise
    import numpy as np
    import cv2
    # Check input parameters
    framework_valid = [
        'tensorflow', 'caffe', 'torch', 'darknet', 'onnx', 'modeloptimizer',
        'haar'
    ]
    framework, fw0 = str(framework).lower(), framework
    if (framework not in framework_valid):
        Raise(
            Exception, 'framework="' + framework +
            '" is NOT valid, must be one of ' + str(framework_valid))
    #----------
    if (minConfidence is None):
        if (framework != 'haar'): minConfidence = 0.7
        else: minConfidence = 3
    #----------
    if (scaleFactor is not None):
        scaleFactor = float(scaleFactor)
    else:
        if (framework == 'tensorflow'): scaleFactor = 1 / 127.5
        elif (framework == 'haar'): scaleFactor = 1.1
        else: scaleFactor = 1.0
    #----------
    if (size is not None):
        try:
            size = tuple(size)[:2]
        except:
            pass
    else:
        if (framework == 'haar'): size = 0
    #----------
    swapRB = False
    swapRB, crop = bool(swapRB), bool(crop)
    #----------
    modelPath = Path.AbsPath(modelPath)
    Path.ExistsPath(modelPath, stop=True)
    if (txtPath is not None):
        txtPath = Path.AbsPath(txtPath)
        Path.ExistsPath(txtPath, stop=True)
    height, width = image.shape[:2]
    #----------------------------------------
    #----------------------------------------
    if (framework != 'haar'):
        # Creates 4-dimensional blob from image
        blob = cv2.dnn.blobFromImage(image, scaleFactor, size, mean, swapRB,
                                     crop)
        #	blob = cv2.dnn.blobFromImage(image)
        # Read the model(weight)
        if (framework == 'tensorflow'):
            net = cv2.dnn.readNetFromTensorflow(modelPath, txtPath)
        elif (framework == 'caffe'):
            net = cv2.dnn.readNetFromCaffe(txtPath, modelPath)
        elif (framework == 'torch'):
            isBinary = txtPath
            net = cv2.dnn.readNetFromTorch(modelPath, isBinary)
        elif (framework == 'darknet'):
            net = cv2.dnn.readNetFromDarknet(txtPath, modelPath)
        elif (framework == 'onnx'):
            net = cv2.dnn.readNetFromONNX(modelPath)
        elif (framework == 'ModelOptimizer'):
            net = cv2.dnn.readNetFromModelOptimizer(txtPath, modelPath)
        else:
            Raise(Exception, 'Not support framework: ' + fw0)
        # Pass the blob through the network
        net.setInput(blob)
        # detection[0,0].shape(num_object, 7)
        # 7: 0:?  1:ClassIndex  2:Confidence  3,4,5,6:Box
        detection = net.forward()[0, 0]
        # Select >= minConfidence
        n = np.arange(len(detection))[detection[:, 2] >= minConfidence]
        detection = detection[n]
        # Detection confidence and rects
        confidence = detection[:, 2]
        rects = (detection[:, 3:] *
                 np.array([[width, height, width, height]])).astype(
                     int)  # xmin, ymin, xmax, ymax
        # Confidence to text to draw
        if (labelMap is None): label = len(rects) * ['']
        else: label = labelMap[detection[:, 1].astype(int)]
        text = []
        for i in range(len(rects)):
            c = ('%.1f' % (100 * confidence[i])) + '%'
            if (label[i] != ''): c = str(label[i]) + ': ' + c
            text.append(c)
    #----------------------------------------
    #----------------------------------------
    else:
        cascade = cv2.CascadeClassifier(modelPath)
        rects = cascade.detectMultiScale(image,
                                         scaleFactor,
                                         minConfidence,
                                         minSize=(5, 5),
                                         flags=size)
        if (len(rects) > 0): rects[:, 2:] += rects[:, :2]
        confidence = np.zeros(len(rects), int)
        text = len(rects) * ['']
    #----------------------------------------
    #----------------------------------------


#	from imutils.object_detection import non_max_suppression
#	rects = non_max_suppression(rects, probs=None, overlapThresh=0.7)
    return (rects, confidence, text)
Exemple #13
0
def NVSSSUMSS(fwhm,
              lon=None,
              lat=None,
              nside=None,
              coordsys='Galactic',
              galcenter=True,
              nvsssumsspath='nvss-sumss_1.4GHz_15mJy_fullsky.hdf5'):
    '''
	return radio source map
		* merged from NVSS and SUMSS
		* healpix, RING, full sky, 1.4GHz, 15mJ limit for completeness
		* fill the missing region

	fwhm:
		[degree]
		fwhm==None: don't smooth the map

	lon, lat:
		[degree]
		lon: RA  | l
		lat: Dec | b
		Must can be broadcast
		Use lon, lat first, otherwise, use nside

	nside:
		Healpix full sky map instead of lon, lat
		nside0 = 1024

	coordsys:
		'Equatorial' | 'Galactic' | 'Ecliptic'

	galcenter:
		True | False
		==True: Retain the galactic center
		==False: discard the galactic center

	nvsssumsspath:
		str, where is the file 'nvss-sumss_1.4GHz_15mJy_fullsky.hdf5'
	'''
    import numpy as np
    import healpy as hp
    import h5py
    from jizhipy.Array import Asarray
    from jizhipy.Basic import Raise, Path, IsType
    from jizhipy.Transform import CoordTrans
    if (nvsssumsspath is None):
        nvsssumsspath = 'nvss-sumss_1.4GHz_15mJy_fullsky.hdf5'
    nvsssumsspath = Path.AbsPath(str(nvsssumsspath))
    if (not Path.ExistsPath(nvsssumsspath)):
        nvsssumsspath = Path.jizhipyPath(
            'jizhipy_tool/nvss-sumss_1.4GHz_15mJy_fullsky.hdf5')
        if (not Path.ExistsPath(nvsssumsspath)):
            Raise(Exception,
                  'nvsssumsspath="' + nvsssumsspath + '" NOT exists')
    #--------------------------------------------------

    nside0 = 1024
    if (lon is not None and lat is not None):
        if (np.sum((lat < -90) + (lat > 90)) > 0):
            Raise(Exception, 'lat out of [-90, 90] degree')
        nside = None
    else:
        islist = True
        try:
            nside = int(nside)
        except:
            nside = nside0
    #--------------------------------------------------

    fo = h5py.File(nvsssumsspath, 'r')
    a = fo['nvsum'].value
    n, void = fo['void'].value
    a[n.astype(int)] = void
    resol = 0.06  # degree

    if (not galcenter):
        theta, phi = hp.pix2ang(nside0, np.arange(a.size))
        theta, phi = 90 - theta * 180 / np.pi, phi * 180 / np.pi
        tf = (-5 < theta) * (theta < 5) * ((phi < 55) + (phi > 345))
        n = np.arange(a.size)[tf]
        del theta, phi, tf
        m = (np.random.random(n.size) * void.size).astype(int)
        a[n] = void[m]
    #--------------------------------------------------

    coordsys = str(coordsys).lower()
    if (nside is None):  # use lon and lat to select region
        if (fwhm is not None and fwhm > resol):
            a = hp.smoothing(a, fwhm * np.pi / 180, verbose=False)
            a[a < 0] = 0
        islist = False if (IsType.isnum(lon + lat)) else True
        lon, lat = lon + lat * 0, lon * 0 + lat  # same shape
        lon %= 360
        lon, lat = CoordTrans.Celestial(lon * np.pi / 180, lat * np.pi / 180,
                                        coordsys, 'galactic')  # rad
        npix = hp.ang2pix(nside0, np.pi / 2 - lat, lon)
        del lon, lat
        a = a[npix]
        del npix
    else:  # full sky healpix map
        if (coordsys != 'galactic'):
            a = CoordTrans.CelestialHealpix(a, 'RING', 'galactic', coordsys)[0]
        if (fwhm is not None and fwhm > resol):
            a = hp.smoothing(a, fwhm * np.pi / 180, verbose=False)
            a[a < 0] = 0
        if (nside != nside0): a = hp.ud_grade(a, nside)
    a = np.float32(a)
    if (not islist): a = a[0]
    return a
Exemple #14
0
def GSM(fwhm,
        freq,
        lon=None,
        lat=None,
        nside=None,
        coordsys='Galactic',
        gsmpath='gsm_parameter.out',
        save=False):
    '''
	Already -2.726

	fwhm:
		[degree]
		fwhm==None: don't smooth the map

	freq, dfreq:
		[MHz]
		Must be one/isnum, NOT list
		* freq: center frequency
		* dfreq: averaged from freq-dfreq/2 (include) to freq+dfreq/2 (include). For GSM(), dfreq effect is very small, so remove this argument

	lon, lat:
		[degree]
		lon: RA  | l
		lat: Dec | b
		Must can be broadcast
		Use lon, lat first, otherwise, use nside

	nside:
		Healpix full sky map instead of lon, lat

	coordsys:
		'Equatorial' | 'Galactic' | 'Ecliptic'

	gsmpath:
		str, where is the program "gsm_parameter.out"
		./gsm_parameter.out  freq  outpath  gsmdir

	save:
		True | False
		Save gsm_xxx.npy or not?

	Compile:
		gfortran -ffixed-line-length-none gsm_parameter.f -o gsm_parameter.out

	return:
		gsm, ndarray
	'''
    import os
    import healpy as hp
    import numpy as np
    from jizhipy.Transform import CoordTrans
    from jizhipy.Array import Asarray
    from jizhipy.Basic import Raise, Path, ShellCmd, IsType
    if (gsmpath is None): gsmpath = 'gsm_parameter.out'
    freq = Asarray(freq).flatten()
    if (freq.size != 1):
        Raise(Exception,
              'freq must isnum, but now freq.size=' + str(freq.size))
    freq = freq[0]
    gsmpath = Path.AbsPath(str(gsmpath))
    if (not Path.ExistsPath(gsmpath)):
        gsmpath = Path.jizhipyPath('jizhipy_tool/GSM/gsm_parameter.out')
        if (not Path.ExistsPath(gsmpath)):
            Raise(Exception, 'gsmpath="' + gsmpath + '" NOT exists')
    n = gsmpath.rfind('/')
    if (n < 0): gsmdir = ''
    else: gsmdir = gsmpath[:n + 1]

    if (lon is not None and lat is not None):
        if (np.sum((lat < -90) + (lat > 90)) > 0):
            Raise(Exception, 'lat out of [-90, 90] degree')
        nside = None
    else:
        islist = True
        try:
            nside = int(nside)
        except:
            nside = 512
    #--------------------------------------------------

    # list local "gsm_*.npy"
    gsmlist = ShellCmd('ls gsm_*.npy')
    ngsm = None
    for i in range(len(gsmlist)):
        try:
            f = np.sort([float(gsmlist[i][4:-4]), freq])
        except:
            continue
        r = (f[1] / f[0])**3
        if (r < 1.01):
            ngsm = i
            break
    if (ngsm is None):
        freqstr = ('%.2f' % freq)
        if (freqstr[-1] == '0'): freqstr = freqstr[:-1]
        if (freqstr[-1] == '0'): freqstr = freqstr[:-2]
        outname = 'gsm_' + freqstr
        os.system(gsmpath + ' ' + freqstr + ' ' + outname + '.dat ' + gsmdir)
        gsm = np.float32(np.loadtxt(outname + '.dat'))
        os.system('rm ' + outname + '.dat')
        if (save): np.save(outname + '.npy', gsm)
    else:
        gsm = np.float32(np.load(gsmlist[ngsm]))
        if (not save): os.system('rm ' + gsmlist[ngsm])
    if (Path.ExistsPath('qaz_cols.dat')): os.system('rm qaz_cols.dat')
    nsidegsm = hp.get_nside(gsm)
    #--------------------------------------------------

    coordsys = str(coordsys).lower()
    if (nside is None):
        if (fwhm is not None and fwhm > 1):
            fwhm = (fwhm**2 - 1)**0.5
            gsm = hp.smoothing(gsm, fwhm * np.pi / 180, verbose=False)
            gsm[gsm < 0] = 0
        islist = False if (IsType.isnum(lon + lat)) else True
        lon, lat = lon + lat * 0, lon * 0 + lat  # same shape
        lon %= 360
        lon, lat = CoordTrans.Celestial(lon * np.pi / 180, lat * np.pi / 180,
                                        coordsys, 'galactic')  # rad
        npix = hp.ang2pix(nsidegsm, np.pi / 2 - lat, lon)
        del lon, lat
        gsm = gsm[npix]
        del npix
    else:
        if (nside != nsidegsm): gsm = hp.ud_grade(gsm, nside)
        if (coordsys != 'galactic'):
            gsm = CoordTrans.CelestialHealpix(gsm, 'RING', 'galactic',
                                              coordsys)[0]
        if (fwhm is not None and fwhm > 1):
            fwhm = (fwhm**2 - 1)**0.5
            gsm = hp.smoothing(gsm, fwhm * np.pi / 180, verbose=False)
            gsm[gsm < 0] = 0
    gsm = np.float32(gsm)
    if (not islist): gsm = gsm[0]
    return gsm