Exemple #1
0
def main() -> None:
    problem = Kursawe()
    algorithm = SMPSO(problem=problem,
                      swarm_size=100,
                      max_evaluations=25000,
                      mutation=Polynomial(1.0 / problem.number_of_variables,
                                          distribution_index=20),
                      leaders=CrowdingDistanceArchive(100))

    algorithm.run()
    result = algorithm.get_result()

    SolutionListOutput[FloatSolution].print_function_values_to_file(
        "FUN." + problem.get_name(), result)

    logger.info("Algorithm (continuous problem): " + algorithm.get_name())
    logger.info("Problem: " + problem.get_name())
Exemple #2
0
    def test_should_SMPSO_work_when_solving_problem_ZDT1_with_standard_settings(self):
        problem = ZDT1()

        algorithm = SMPSO(
            problem=problem,
            swarm_size=100,
            mutation=PolynomialMutation(probability=1.0 / problem.number_of_variables, distribution_index=20),
            leaders=CrowdingDistanceArchive(100),
            termination_criterion=StoppingByEvaluations(max_evaluations=25000),
        )

        algorithm.run()
        front = algorithm.get_result()

        hv = HyperVolume(reference_point=[1, 1])
        value = hv.compute([front[i].objectives for i in range(len(front))])

        self.assertTrue(value >= 0.655)
if __name__ == '__main__':
    problem = DTLZ1(number_of_objectives=5)

    max_evaluations = 25000
    algorithm = SMPSO(
        problem=problem,
        swarm_size=100,
        mutation=PolynomialMutation(probability=1.0 / problem.number_of_variables, distribution_index=20),
        leaders=CrowdingDistanceArchive(100),
        termination_criterion=StoppingByEvaluations(max=max_evaluations)
    )

    algorithm.observable.register(observer=ProgressBarObserver(max=max_evaluations))

    algorithm.run()
    front = algorithm.get_result()

    label = algorithm.get_name() + "." + problem.get_name()

    # Plot front
    plot_front = Plot(plot_title='Pareto front approximation', reference_front=problem.reference_front,
                      axis_labels=problem.obj_labels)
    plot_front.plot(front, label=algorithm.label, filename=algorithm.get_name())

    # Plot interactive front
    plot_front = InteractivePlot(plot_title='Pareto front approximation', reference_front=problem.reference_front,
                                 axis_labels=problem.obj_labels)
    plot_front.plot(front, label=algorithm.label, filename=algorithm.get_name())

    # Save results to file