def commit(notebook_id=None, nb_filename=None): """ sh: jovian clone notebook_id :param nb_filename: :param notebook_id: 内容覆盖566f95b138a9465aa8d17e0f1836570a -> https://jvn.io/Jie-Yuan/566f95b138a9465aa8d17e0f1836570a :return: """ print( "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJmcmVzaCI6ZmFsc2UsImlkZW50aXR5Ijp7InVzZXJuYW1lIjoiSmllLVl1YW4iLCJpZCI6Njd9LCJ0eXBlIjoiYWNjZXNzIiwiZXhwIjoxNTUyOTY1NTkzLCJpYXQiOjE1NTIzNjA3OTMsIm5iZiI6MTU1MjM2MDc5MywianRpIjoiNjM1ZTg2MjQtYjA1ZC00NGJmLTljYjAtOGVjOGRmM2ExNmJkIn0.5jglhEGGs12ITl-DWWaFL-BVPhCzaDEeMKIJvEI-bbA" ) print('\n') jovian.commit(nb_filename=nb_filename, env_type='pip', notebook_id=notebook_id)
testinputs, testlabels = testinput.to(device), testlabel.to( device) testpredictions = model9(testinputs) _, testpredict = torch.max(testpredictions.data, 1) tloss = criterion(testpredictions, testlabels) testloss += tloss.item() testtotal += testlabels.size(0) testsuccessful += (testpredict == testlabels).sum().item() trainlosses.append(trainloss / len(train_dl)) testlosses.append(testloss / len(valid_dl)) print('Epoch: ', e) print('Train Accuracy %{:.2f}'.format(100 * trainsuccessful / traintotal)) print('Test Accuracy %{:.2f}'.format(100 * testsuccessful / testtotal)) # In[ ]: # In[ ]: # In[ ]: jovian.log_metrics(train_loss=history[-1]['train_loss'], val_loss=history[-1]['val_loss'], val_acc=history[-1]['val_acc']) # In[80]: jovian.commit(project=project_name, environment=None) # In[ ]:
for i in range(0,1000): if(y[i]==0): pos=pos+1 else: neg=neg+1 print(pos) print(neg) """## Splitting the dataset into the Training set and Test set""" from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, random_state = 0) import jovian jovian.commit(project='cmpn-100') """## Training the Naive Bayes model on the Training set""" from sklearn.naive_bayes import GaussianNB classifier = GaussianNB() classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) from sklearn.metrics import confusion_matrix, accuracy_score cm = confusion_matrix(y_test, y_pred) print(cm) accuracy_score(y_test, y_pred) """## Training on Simple Logistic Regression"""
import jovian jovian.commit(message='first commit', files=['Basic Python.ipynb'])
import jovian jovian.commit(project='jovian-v2-script-test2', message='Testing message from script', privacy='secret', environment='pip', git_message='a commit from jovian')
# In[3]: project_name = "SuicideRates" # In[4]: get_ipython().system('pip install jovian --upgrade -q') # In[5]: import jovian # In[6]: jovian.commit(project=project_name) # ## Loading the Dataset # We are ready to load and read the dataset, above we used command "read_csv" which is used for read .csv format files. Now, we load the dataset and take a look. # In[7]: sr_df # As we can see the data of dataset rows number and columns names # # In[8]: sr_df.head(2)
The recommended way to run this notebook is to click the "Run" button at the top of this page, and select "Run on Binder". This will run the notebook on [mybinder.org](https://mybinder.org), a free online service for running Jupyter notebooks. Before staring the assignment, let's save a snapshot of the assignment to your Jovian.ml profile, so that you can access it later, and continue your work. """ # Install the library !pip install jovian --upgrade --quiet # Import it import jovian project_name='python-practice-assignment' # Capture and upload a snapshot jovian.commit(project=project_name, privacy='secret', evironment=None) """You'll be asked to provide an API Key, to securely upload the notebook to your Jovian.ml account. You can get the API key from your Jovian.ml profile page after logging in / signing up. See the docs for details: https://jovian.ml/docs/user-guide/upload.html . The privacy of your assignment notebook is set to *Secret*, so that you can the evlauators can access it, but it will not shown on your public profile to other users. ## Problem 1 - Variables and Data Types **Q: Assign your name to the variable `name`.** """ name = 'Purvansh' """**Q: Assign your age (real or fake) to the variable `age`.**""" age = 24 """**Q: Assign a boolean value to the variable `has_android_phone`.**"""
preds=model(inputs) loss=mse(preds,targets) print(loss) # In[27]: # Predictions preds # In[28]: # Targets targets # In[29]: import jovian # In[ ]: jovian.commit()
Qs = range(0, 2) qs = range(0, 3) Ps = range(0, 3) ps = range(0, 3) D=1 d=1 parameters = product(ps, qs, Ps, Qs) parameters_list = list(parameters) len(parameters_list) # Model Selection results = [] best_aic = float("inf") warnings.filterwarnings('ignore') for param in parameters_list: try: model=sm.tsa.statespace.SARIMAX(df_month.Weighted_Price_box, order=(param[0], d, param[1]), seasonal_order=(param[2], D, param[3], 12)).fit(disp=-1) except ValueError: print('wrong parameters:', param) continue aic = model.aic if aic < best_aic: best_model = model best_aic = aic best_param = param results.append([param, model.aic]) jovian.commit(project=project)
# In[1]: get_ipython().system('pip install jovian --upgrade -q') # In[2]: import jovian # In[3]: jovian.commit(project='numpy-array-operations') # Let's begin by importing Numpy and listing out the functions covered in this notebook. # In[4]: import numpy as np # In[5]: # List of functions explained function1 = np.eye()