Exemple #1
0
def process_pie():
    df = process_input()

    df[df.columns[1]] = pd.to_numeric(df[df.columns[1]])
    df[df.columns[2]] = pd.to_numeric(df[df.columns[2]])
    df[df.columns[3]] = pd.to_numeric(df[df.columns[3]])
    col1 = df[df.columns[1]].values
    col2 = df[df.columns[2]].values
    col3 = df[df.columns[3]].values

    Plotly.plot(document.getElementById('plot1'), [{
        'values': [
            df[df.columns[1]].sum(), df[df.columns[2]].sum(),
            df[df.columns[3]].sum()
        ],
        'labels': [
            df[df.columns[1]].name, df[df.columns[2]].name,
            df[df.columns[3]].name
        ],
        'type':
        'pie'
    }], {
        'height': 350,
        'width': 500
    })
Exemple #2
0
async def plot(UR, Sawyer, inst, state_flags_enum):

	xs = []
	ys = []

	# Add x and y to lists
	for obj in await inst.async_get_objects(None):
		xs.append(obj.x/1000.)
		ys.append(obj.y/1000.)

	sawyer_state = await Sawyer.robot_state.AsyncPeekInValue(None)
	ur_state = await UR.robot_state.AsyncPeekInValue(None)

	pose_Sawyer=sawyer_state[0].kin_chain_tcp
	q_Sawyer=sawyer_state[0].joint_position

	q_UR=ur_state[0].joint_position
	pose_UR=ur_state[0].kin_chain_tcp


	# Draw x and y lists
	pose_Sawyer_C=np.dot(H_S_C,np.array([[pose_Sawyer[0]['position']['x']],[pose_Sawyer[0]['position']['y']],[1]]))
	pose_UR_C=np.dot(H_UR_C,np.array([[pose_UR[0]['position']['x']],[pose_UR[0]['position']['y']],[1]]))


	objects={ 'y': ys, 'x': xs ,'mode':'markers','name':'objects','type':'scatter','marker':{'size':10,'color':'#000000'}}
	UR5_robot={ 'y': pose_UR_C[1], 'x': pose_UR_C[0] ,'mode':'markers','name':'UR5_robot','type':'scatter','marker':{'size':10,'color':'#27e3d3'}}
	Sawyer_robot={ 'y': pose_Sawyer_C[1], 'x': pose_Sawyer_C[0] ,'mode':'markers','name':'Sawyer_robot','type':'scatter','marker':{'size':10,'color':'#e31010'}}

	Plotly.react('plot',[objects,UR5_robot, Sawyer_robot])
Exemple #3
0
def process_scatter():
    df = process_input()
    col1 = df[df.columns[0]].values
    col2 = df[df.columns[1]].values

    Plotly.plot(document.getElementById('plot2'),
                [{
                    'x': col1,
                    'y': col2,
                    'type': 'scatter',
                    'mode': 'markers+lines',
                    'hoverinfo': 'label',
                    'label': 'Zoom Background Interest'
                }])
Exemple #4
0
def process_geo_map():
    df = process_input()

    df[df.columns[1]] = pd.to_numeric(df[df.columns[1]])
    df[df.columns[2]] = pd.to_numeric(df[df.columns[2]])

    col1 = df[df.columns[1]].values
    col2 = df[df.columns[2]].values
    col3 = df[df.columns[3]].values
    Plotly.plot(document.getElementById('plot4'), [{
        'type': 'scattergeo',
        'lon': col2,
        'lat': col1,
        'text': col3
    }])
Exemple #5
0
def process_3d_maps():
    df = process_input()

    col0 = df[df.columns[0]].values
    col1 = df[df.columns[1]].values
    col2 = df[df.columns[2]].values
    col3 = df[df.columns[3]].values
    col4 = df[df.columns[4]].values
    col5 = df[df.columns[5]].values

    Plotly.plot(document.getElementById('plot6'), [{
        'x': col0,
        'y': col1,
        'z': col2,
        'mode': 'markers',
        'marker': {
            'size': 12,
            'line': {
                'color': 'rgba(217, 217, 217, 0.14)',
                'width': 0.5
            },
            'opacity': 0.8
        },
        'type': 'scatter3d'
    }, {
        'x': col3,
        'y': col4,
        'z': col5,
        'mode': 'markers',
        'marker': {
            'color': 'rgb(127, 127, 127)',
            'size': 12,
            'symbol': 'circle',
            'line': {
                'color': 'rgb(204, 204, 204)',
                'width': 1
            },
            'opacity': 0.8
        },
        'type': 'scatter3d'
    }], {'margin': {
        'l': 0,
        'r': 0,
        'b': 0,
        't': 0
    }})
Exemple #6
0
def process_heat_maps():
    df = process_input()

    df[df.columns[0]] = pd.to_numeric(df[df.columns[0]])
    df[df.columns[1]] = pd.to_numeric(df[df.columns[1]])
    df[df.columns[2]] = pd.to_numeric(df[df.columns[2]])

    col0 = df[df.columns[0]].values
    col1 = df[df.columns[1]].values
    col2 = df[df.columns[2]].values
    col3 = df[df.columns[3]].values
    col4 = df[df.columns[4]].values

    Plotly.plot(document.getElementById('plot5'), [{
        'z': [col0, col1, col2],
        'x': col3,
        'y': col4,
        'type': 'heatmap',
        'hoverongaps': 'false'
    }])
Exemple #7
0
def process_time_series():
    df = process_input()

    df[df.columns[1]] = pd.to_numeric(df[df.columns[1]])
    df[df.columns[2]] = pd.to_numeric(df[df.columns[2]])
    df[df.columns[3]] = pd.to_numeric(df[df.columns[3]])

    col1 = df[df.columns[0]].values
    col2 = df[df.columns[1]].values
    col3 = df[df.columns[2]].values
    col4 = df[df.columns[3]].values

    Plotly.plot(document.getElementById('plot3'), [{
        'x': col1,
        'y': col2,
        'type': 'scatter',
        'mode': "lines",
        'name': 'Pho',
        'line': {
            'color': '#17BECF'
        }
    }, {
        'x': col1,
        'y': col3,
        'type': "scatter",
        'mode': "lines",
        'name': 'Ramen',
        'line': {
            'color': '#7F7F7F'
        }
    }, {
        'x': col1,
        'y': col4,
        'type': "scatter",
        'mode': "lines",
        'name': 'Soba',
        'line': {
            'color': '#7C19E2'
        }
    }])