Exemple #1
0
    def check_config(self, **cfg: Union[int,
                                        str]) -> Dict[str, Union[int, str]]:
        """
        Add default values to the dictionary if there are missing elements and check if the dictionary is correct

        :param cfg: matching_cost configuration
        :type cfg: dict
        :return cfg: matching_cost configuration updated
        :rtype: dict
        """
        # Give the default value if the required element is not in the configuration
        if "window_size" not in cfg:
            cfg["window_size"] = self._WINDOW_SIZE
        if "subpix" not in cfg:
            cfg["subpix"] = self._SUBPIX

        schema = {
            "matching_cost_method": And(str, lambda x: x == "mc_cnn"),
            "window_size": And(int, lambda x: x == 11),
            "subpix": And(int, lambda x: x == 1),
            "mc_cnn_arch": And(str, lambda x: x in ("fast", "accurate")),
            "model_path": And(str, lambda x: os.path.exists(x)),
        }

        checker = Checker(schema)
        checker.validate(cfg)
        return cfg
Exemple #2
0
def lambda_handler(event, context):
    current_data = {'first_key': 1, 'second_key': '2'}
    expected_schema = {'first_key': int, 'second_key': str}
    checker = Checker(expected_schema)

    s3_events = []
    for record in event['Records']:
        s3_events.append({
            "bucket": record['s3']['bucket']['name'],
            "file": record['s3']['object']['key']
        })

    data = {"result": checker.validate(current_data), "s3_events": s3_events}

    try:
        response = requests.post(
            'https://python-lambda.free.beeceptor.com/my/api/path',
            data=json.dumps(data))

    except Exception as error:
        print('Error in request: ', str(error))

    return {
        "statusCode":
        200,
        "body":
        json.dumps({
            "result": checker.validate(current_data),
            "s3_events": s3_events
        }),
    }
Exemple #3
0
def check_input_json(event):
    expected_schema = {
        "AccountName": str,
        "Email": str,
        "RoleName": str,
        "Tags": [dict]
    }
    checker = Checker(expected_schema)
    result = checker.validate(event)
    assert result == event
Exemple #4
0
def check_json(conf, schema):
    """
    Check a dictionary with respect to a schema

    :param conf: The dictionary to check
    :type conf: dict
    :param schema: The schema to use
    :type schema: dict

    :returns: conf if check succeeds (else raises CheckerError)
    :rtype: dict
    """
    schema_validator = Checker(schema)
    checked_conf = schema_validator.validate(conf)
    return checked_conf
Exemple #5
0
def test_checker_assert(expected, current, soft):
    with pytest.raises(CheckerError):
        Checker(expected, soft).validate(current)
Exemple #6
0
def test_checker_string_with_callable_data():
    c = Checker(lambda x: x is True)
    assert str(c) == "<Checker soft=False expected=<lambda>>"
Exemple #7
0
def test_checker_list_dicts_soft():
    with pytest.raises(CheckerError):
        c = Checker([{"key1": int}], soft=True)
        c.validate([{"key1": 1}, {"key1": 1}, {"key1": "1"}])
Exemple #8
0
def test_checker_list_dicts_hard():
    with pytest.raises(ListCheckerError):
        c = Checker([{"key1": int}], soft=False)
        c.validate([{"key1": 1}, {"key1": 1}, {"key1": "1"}])
Exemple #9
0
def test_checker_list_dicts_hard_positive(soft):
    data = [{"key1": 1}, {"key1": 2}, {"key1": 3}]
    c = Checker([{"key1": int}], soft=soft)
    assert c.validate(data) == data
Exemple #10
0
    def check_conf(
        self, **cfg: Union[str, int, float, bool]
    ) -> Dict[str, Union[str, int, float, bool]]:
        """
        Add default values to the dictionary if there are missing elements and check if the dictionary is correct

        :param cfg: optimization configuration
        :type cfg: dict
        :return cfg: optimization configuration updated
        :rtype cfg: dict
        """
        # Give the default value if the required element is not in the configuration
        if "P1" not in cfg:
            cfg["P1"] = self._P1
        if "P2" not in cfg:
            cfg["P2"] = self._P2
        if "alpha" not in cfg:
            cfg["alpha"] = self._ALPHA
        if "beta" not in cfg:
            cfg["beta"] = self._BETA
        if "gamma" not in cfg:
            cfg["gamma"] = self._GAMMA
        if "p2_method" not in cfg:
            cfg["p2_method"] = self._P2_METHOD
        if "overcounting" not in cfg:
            cfg["overcounting"] = self._OVERCOUNTING
        if "min_cost_paths" not in cfg:
            cfg["min_cost_paths"] = self._MIN_COST_PATH
        if "use_confidence" not in cfg:
            cfg["use_confidence"] = self._USE_CONFIDENCE
        if "piecewise_optimization_layer" not in cfg:
            cfg["piecewise_optimization_layer"] = self._PIECEWISE_OPTIMIZATION_LAYER

        p1_value = cfg["P1"]

        schema = {
            "sgm_version":
            And(
                str, lambda x: is_method(
                    x, ["c++", "python_libsgm", "python_libsgm_parall"])),
            "optimization_method":
            And(str, lambda x: is_method(x, ["sgm"])),
            "penalty_method":
            And(str, lambda x: is_method(x, ["sgm_penalty"])),
            "P1":
            And(Or(int, float), lambda x: x > 0),
            "P2":
            And(Or(int, float), lambda x: x > p1_value),
            "alpha":
            And(Or(int, float), lambda x: x >= 0),
            "beta":
            And(Or(int, float), lambda x: x > 0),
            "gamma":
            And(Or(int, float), lambda x: x > 0),
            "p2_method":
            And(
                str, lambda x: is_method(
                    x, ["constant", "negativeGradient", "inverseGradient"])),
            "overcounting":
            bool,
            "min_cost_paths":
            bool,
            "use_confidence":
            bool,
            "piecewise_optimization_layer":
            And(str, lambda x: is_method(x, ["None", "classif", "segm"])),
        }

        checker = Checker(schema)
        checker.validate(cfg)
        return cfg
Exemple #11
0
def test_checker_string():
    c = Checker(int)
    assert str(c) == "<Checker soft=False expected=int>"
Exemple #12
0
def test_soft_checker_with_errors(expected, current):
    with pytest.raises(CheckerError):
        Checker(expected, soft=True).validate(current)
Exemple #13
0
def test_create_checker_instance_with_default_param():
    c = Checker(int)
    assert c.expected_data is int
    assert c.soft is False
    assert c.ignore_extra_keys is False
Exemple #14
0
def test_checker_positive(expected, current, soft):
    assert Checker(expected, soft).validate(current) == current
    def check_conf(self, **cfg: Union[str, int, float, bool]) -> Dict[str, Union[str, int, float, bool]]:
        """
        Add default values to the dictionary if there are missing elements and check if the dictionary is correct

        :param cfg: optimization configuration
        :type cfg: dict
        :return cfg: optimization configuration updated
        :rtype cfg: dict
        """
        # Load default penalties according to the type of mc-cnn measure
        if cfg["penalty_method"] == "mc_cnn_accurate_penalty":
            default_p1 = self._P1_ACCURATE
            default_p2 = self._P2_ACCURATE
            default_q1 = self._Q1_ACCURATE
            default_q2 = self._Q2_ACCURATE
            default_d = self._D_ACCURATE
            default_v = self._V_ACCURATE
        else:
            default_p1 = self._P1_FAST
            default_p2 = self._P2_FAST
            default_q1 = self._Q1_FAST
            default_q2 = self._Q2_FAST
            default_d = self._D_FAST
            default_v = self._V_FAST

        # Give the default value if the required element is not in the configuration
        if "P1" not in cfg:
            cfg["P1"] = default_p1
        if "P2" not in cfg:
            cfg["P2"] = default_p2
        if "Q1" not in cfg:
            cfg["Q1"] = default_q1
        if "Q2" not in cfg:
            cfg["Q2"] = default_q2
        if "D" not in cfg:
            cfg["D"] = default_d
        if "V" not in cfg:
            cfg["V"] = default_v
        if "overcounting" not in cfg:
            cfg["overcounting"] = self._OVERCOUNTING
        if "min_cost_paths" not in cfg:
            cfg["min_cost_paths"] = self._MIN_COST_PATH
        if "use_confidence" not in cfg:
            cfg["use_confidence"] = self._USE_CONFIDENCE
        if "piecewise_optimization_layer" not in cfg:
            cfg["piecewise_optimization_layer"] = self._PIECEWISE_OPTIMIZATION_LAYER

        p1_value = cfg["P1"]
        schema = {
            "sgm_version": And(
                str,
                lambda x: is_method(x, ["c++", "python_libsgm", "python_libsgm_parall"]),
            ),
            "optimization_method": And(str, lambda x: is_method(x, ["sgm"])),
            "penalty_method": And(
                str,
                lambda x: is_method(x, ["mc_cnn_fast_penalty", "mc_cnn_accurate_penalty"]),
            ),
            "P1": And(Or(int, float), lambda x: x > 0),
            "P2": And(Or(int, float), lambda x: x > p1_value),
            "Q1": And(Or(int, float), lambda x: x > 0),
            "Q2": And(Or(int, float), lambda x: x > 0),
            "D": And(Or(int, float), lambda x: x >= 0),
            "V": And(Or(int, float), lambda x: x > 0),
            "overcounting": bool,
            "min_cost_paths": bool,
            "use_confidence": bool,
            "piecewise_optimization_layer": And(str, lambda x: is_method(x, ["None", "classif", "segm"])),
        }

        checker = Checker(schema)
        checker.validate(cfg)
        return cfg
Exemple #16
0
def test_miss_keys(expected, current, exp_exception):
    with pytest.raises(exp_exception):
        Checker(expected).validate(current)
Exemple #17
0
def test_miss_keys_soft(expected, current):
    with pytest.raises(CheckerError):
        Checker(expected, soft=True).validate(current)
Exemple #18
0
def test_create_checker_instance_with_custom_param():
    c = Checker(int, True, True)
    assert c.expected_data is int
    assert c.soft is True
    assert c.ignore_extra_keys is True
Exemple #19
0
def test_repr_checker_class(test_data, expected_result):
    c = Checker(test_data, soft=True)
    assert c.__str__() == expected_result
Exemple #20
0
def test_checker_with_errors(expected, current, exception):
    with pytest.raises(exception):
        Checker(expected, soft=False).validate(current)