Exemple #1
0
def get_data(name, plot=0):
    analysis_mgr = jspec.dssd_analysis_manager(name, '../../storage/',
                                               (32, 32), [1, 1, 1])
    data = analysis_mgr.load_dill('dl_estimates')

    num_sources = len(data)
    num_dets = len(data[0][0])

    ret = meas.empty((num_sources, num_dets))

    for i in range(num_sources):
        for d in range(num_dets):
            tmp = data[i][0][d]
            ret[i, d] = meas.meas(np.nanmean(tmp.x), np.nanstd(tmp.x))

    if plot:
        f, axarr = plt.subplots(num_sources, num_dets, squeeze=0)

        for d in range(num_dets):
            for i in range(num_sources):
                tmp = data[i][0][d]
                print(d, i)
                print(ret[i, d])
                axarr[i, d].errorbar(range(32), tmp.x, tmp.dx, ls='none')
                axarr[i, d].axhline(ret[i, d].x, c='r')
        plt.show()
        plt.close('all')

    return ret
num_peaks_to_detect = 6

if cut_strips:
    hitmap_label = None
else:
    hitmap_label = 'no_cuts'

exp1_secant_matrices = exp1_geometry.get_secant_matrices()
peak_group_ranges = [[-np.inf, 2700], [2700, 2900], [2900, np.inf]]

thresholds = [20, 20, 20]

# for name in [ 'centered', 'moved', 'flat', 'angled' ] : # , 'det3_moved', 'det3_cent' ] :

analysis_mgr = spec.dssd_analysis_manager(name, '../../../storage/', (32, 32),
                                          [1, 1, 1])

# primary_peaks = spec.write_peakdetect( analysis_mgr, primary_peak_detector, data_retriever,
#                                        num_peaks_to_detect )

primary_peaks = analysis_mgr.compute_primary_peaks(
    group_ranges,
    primary_peak_detector,
    num_peaks_to_detect=num_peaks_to_detect,
    primary_peak_detector=primary_peak_detector,
    plot=0,
    load=1)

# primary_peaks = analysis_mgr.compute_primary_peaks( peak_group_ranges, thresholds,
#                                           load = 0, plot = 1  )
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as st
from sklearn.neighbors.kde import KernelDensity
import statsmodels.api as sm

# data_name = 'full_bkgd_tot_cut'
data_name = 'full_bkgd_tot'
coords = (0, 16, 16)

y_bottom = 1e-6
hist_bin_size = 10

kde_bandwidth = 1

mgr = spec.dssd_analysis_manager(data_name, '../../../storage', (32, 32),
                                 [1, 1, 1])

# coords = (0, 27, 16 )

data = mgr.get_data(*coords)

print(data)

x = np.arange(0, 3000, hist_bin_size)
y, bin_edges = np.histogram(data, x)
x = x[0:-1]

# ax = plt.axes()

f = plt.figure(figsize=(6, 7))
import jspectroscopy as spec
import numpy as np
import matplotlib.pyplot as plt
import colorcet
from mpl_toolkits.axes_grid1 import make_axes_locatable
plt.rcParams["font.family"] = "Arial"
plt.rcParams['mathtext.default'] = 'regular'

savepath = '../../../../plots_important/sample_hitmaps.eps'

analysis_mgr = spec.dssd_analysis_manager('full_bkgd_tot',
                                          '../../../../storage', (32, 32),
                                          [1, 1, 1])

hitmaps = analysis_mgr.load_dill('hitmaps')

source_names = [r'$^{148}Gd$', r'$^{264}Cm$']

f, axarr = plt.subplots(2, 1, figsize=(4, 8))

f.suptitle('Source Hitmaps', fontsize=20)

f.subplots_adjust(hspace=0.5)

for i in range(2):
    idx = i + 1
    axarr[i].set_title(source_names[i], fontsize=15)
    im = axarr[i].imshow(hitmaps[idx][0][3], cmap=colorcet.m_rainbow)
    divider = make_axes_locatable(axarr[i])
    cax = divider.append_axes("right", size="5%", pad=0.05)
    f.colorbar(im, cax=cax)
Exemple #5
0
            for coords in data_to_remove :
        # print( coords ) 
                dssd[ i,j,0, coords ] = meas.nan





# np.set_printoptions(threshold=np.nan)
# print( det_sectheta[0][0] )
# sys.exit(0)




analysis_mgr = spec.dssd_analysis_manager( data_name, storage_path, (1,1), [1,1,1] )

    


cf249_energies = np.array( [  5704, 5759.5, 5783.3, 5813.3, 5849.3 ] )
cf249_probs = np.array( [ 0.0003, 0.0469, 0.0026, 0.822, 0.01430  ] )
cf249_probs /= np.sum( cf249_probs )

# pu238_energies = np.array( [  5704, 5759.5, 5783.3, 5813.3, 5849.3 ] )
# pu238_probs = np.array( [ 0.0003, 0.0469, 0.0026, 0.822, 0.01430  ] )
# pu238_probs /= np.sum( pu238_probs )


pu240_energies = np.array( [ 5123.68, 5168.17 ] ) 
pu240_probs = np.array( [ 0.2710, 0.7280 ] )
import jspectroscopy as spec
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as st
from sklearn.neighbors.kde import KernelDensity
import statsmodels.api as sm

use_kde = 0
y_bottom = 1e-6
hist_bin_size = 20

highres_bin_size = 2

kde_bandwidth = 1

db = spec.dssd_analysis_manager('full_bkgd_tot_cuts', '../../../storage',
                                [1, 1, 1], (32, 32))

coords = (0, 16, 16)

if not use_kde:
    data = db.get_data(*coords)

    x = np.arange(0, 3000, hist_bin_size)
    y, bin_edges = np.histogram(data, x)
    x = x[0:-1]

    x_fine = np.arange(0, 3000, highres_bin_size)
    y_fine, bin_edges_fine = np.histogram(data, x_fine)
    x_fine = x_fine[0:-1]

    # ax = plt.axes()
Exemple #7
0
det_stopping_power_interp = None

model_params = dl_estimator.deadlayer_model_params(
    disable_sources=0,
    vary_det_deadlayer=1,
    interp_det_stopping_power=1,
    interp_source_stopping_powers=0,
    fstrips_requested=np.arange(1, 31),
    bstrips=np.arange(15, 28),
    fix_source_deadlayers=None,
    one_source_constant=0,
    det_thickness=0,
    vary_source_thickness=0,
    constant_energy_offset=0)

analysis_mgr = spec.dssd_analysis_manager('full_bkgd_tot', storage_path,
                                          (32, 32), [1, 1, 1])

# channels = analysis_mgr.load_dill( 'peaks' )
# peak_indices = [ [1], [0,1] ]
# num_peaks_per_source = [ len( x ) for x in peak_indices ]

channels = analysis_mgr.load_dill('means')[1:]

# peak_indices = [ [0], [0] ]
peak_indices = None

det_sectheta = exp2_geometry.get_secant_matrices()[1:]

source_sectheta = det_sectheta

if peak_indices is not None: