Exemple #1
0
def fitness(kr):
    return 1 / (jst.mse(inps, kr, num_input, num_hidden, num_output) + 0.0001)
Exemple #2
0
def fitness(kr):
	return 1/(jst.mse(inps,kr,num_hidden)+0.1)
Exemple #3
0
	inps = loader.loadCsv(file_data_testing)

inps = loader.stringifyVar(inps,loader.normalizeVar(loader.getVar(inps)))
weights = jst.decodeWeights(loader.loadCsv(file_weights),num_input,num_hidden,num_output)

match = 0
tp1 = 0
pp1 = 0
tn1 = 0
pn1 = 0
for i in range(len(inps)):
 	if(jst.correct(inps[i],weights)):
 		match += 1
 	if(jst.truePositive1(inps[i],weights)):
 		tp1 += 1
 	if(jst.trueNegative1(inps[i],weights)):
 		tn1 += 1
 	if(jst.predictPositive1(inps[i],weights)):
 		pp1 += 1
 	if(jst.predictNegative1(inps[i],weights)):
 		pn1 += 1
presisi1 = (tp1*1.0)/((tp1+(pp1-tp1))+0.0000001)
recall1 = (tp1*1.0)/((tp1+(pn1-tn1))+0.0000001)
presisi0 = (tn1*1.0)/((tn1+(pn1-tn1))+0.0000001)
recall0 = (tn1*1.0)/((tn1+(pp1-tp1))+0.0000001)
measure1 = 2*(presisi1*recall1)/((presisi1+recall1)+0.0000001)
measure0 = 2*(presisi0*recall0)/((presisi0+recall0)+0.0000001)
print measure0, measure1
print "Jumlah klasifikasi yang sesuai = "+str(match)+"/"+str(len(inps))
print "MSE = "+str(jst.mse(inps,loader.loadCsv(file_weights),num_input,num_hidden,num_output))
print "Persentase kecocokan = "+str((match*100)/len(inps))+"%"