def test_similar_row_from_datum_and_rate(self):
        filter_warning()
        recommender = Recommender.run(Config())
        loader = StubLoader()
        schema = Schema({'v': Schema.ID})
        dataset = Dataset(loader, schema)
        for (idx, row_id,
             result) in recommender.similar_row_from_datum_and_rate(dataset):
            self.assertEqual(0, len(result))

        # rate must be in (0, 1].
        def func():
            for _ in recommender.similar_row_from_datum_and_rate(dataset,
                                                                 rate=0.0):
                pass

        self.assertRaises(ValueError, lambda: func())

        def func():
            for _ in recommender.similar_row_from_datum_and_rate(dataset,
                                                                 rate=1.01):
                pass

        self.assertRaises(ValueError, lambda: func())

        schema = Schema({'v': Schema.NUMBER})
        dataset = Dataset(loader, schema)
        for (idx, row_id,
             result) in recommender.similar_row_from_datum_and_rate(dataset):
            self.assertEqual(None, row_id)  # there is no id in column_table
            self.assertEqual(
                0, len(result))  # there is no similar row in column_table

        recommender.stop()
    def test_similar_row_from_id_and_score(self):
        filter_warning()
        recommender = Recommender.run(Config())
        loader = StubLoader()

        # dataset must have id when execute `similar_row_from_id_and_score`
        schema = Schema({'v': Schema.NUMBER})
        dataset = Dataset(loader, schema)

        def func():
            for _ in recommender.similar_row_from_id_and_score(dataset):
                pass

        self.assertRaises(RuntimeError, lambda: func())

        schema = Schema({'v': Schema.ID})
        dataset = Dataset(loader, schema)
        for (idx, row_id,
             result) in recommender.similar_row_from_id_and_score(dataset):
            self.assertEqual(str(idx + 1),
                             row_id)  # there is no id in column_table
            self.assertEqual(
                0, len(result))  # there is no similar row in column_table

        recommender.stop()
Exemple #3
0
 def test_method_param(self):
     self.assertTrue('parameter' not in Config(method='inverted_index'))
     self.assertTrue('hash_num' in Config(method='minhash')['parameter'])
     self.assertTrue('hash_num' in Config(method='lsh')['parameter'])
     self.assertTrue('threads' in Config(method='lsh')['parameter'])
     self.assertTrue('method' in Config(
         method='nearest_neighbor_recommender')['parameter'])
     self.assertTrue('parameter' in Config(
         method='nearest_neighbor_recommender')['parameter'])
     self.assertTrue('threads' in Config(
         method='nearest_neighbor_recommender')['parameter']['parameter'])
     self.assertTrue('hash_num' in Config(
         method='nearest_neighbor_recommender')['parameter']['parameter'])
Exemple #4
0
    def test_update_row(self):
        recommender = Recommender.run(Config())
        loader = StubLoader()

        # dataset must have id when execute `update_row`
        schema = Schema({'v': Schema.NUMBER})
        dataset = Dataset(loader, schema)

        def func():
            for _ in recommender.update_row(dataset):
                pass

        self.assertRaises(RuntimeError, lambda: func())

        schema = Schema({'v': Schema.ID})
        dataset = Dataset(loader, schema)
        for (idx, row_id, result) in recommender.update_row(dataset):
            self.assertEqual(result, True)
        recommender.stop()
Exemple #5
0
    def test_similar_row_from_datum(self):
        filter_warning()
        recommender = Recommender.run(Config())
        loader = StubLoader()
        schema = Schema({'v': Schema.ID})
        dataset = Dataset(loader, schema)
        for (idx, row_id,
             result) in recommender.similar_row_from_datum(dataset):
            self.assertEqual(0, len(result))

        schema = Schema({'v': Schema.NUMBER})
        dataset = Dataset(loader, schema)
        for (idx, row_id,
             result) in recommender.similar_row_from_datum(dataset):
            self.assertEqual(None, row_id)  # there is no id in column_table
            self.assertEqual(
                0, len(result))  # there is no similar row in column_table

        recommender.stop()
Exemple #6
0
    def test_complete_row_from_datum(self):
        filter_warning()
        recommender = Recommender.run(Config())
        loader = StubLoader()

        schema = Schema({'v': Schema.ID})
        dataset = Dataset(loader, schema)
        for (idx, row_id, d) in recommender.complete_row_from_datum(dataset):
            self.assertEqual(0, len(d.string_values))
            self.assertEqual(0, len(d.num_values))
            self.assertEqual(0, len(d.binary_values))

        schema = Schema({'v': Schema.NUMBER})
        dataset = Dataset(loader, schema)
        for (idx, row_id, d) in recommender.complete_row_from_datum(dataset):
            self.assertEqual(None, row_id)  # there is no id in column_table.
            self.assertEqual(0, len(d.string_values))
            self.assertEqual(0, len(d.num_values))
            self.assertEqual(0, len(d.binary_values))

        recommender.stop()
    def test_clear_row(self):
        recommender = Recommender.run(Config())
        loader = StubLoader()

        # dataset must have id when execute `clear_row`.
        schema = Schema({'v': Schema.NUMBER})
        dataset = Dataset(loader, schema)

        def func():
            for _ in recommender.clear_row(dataset):
                pass

        self.assertRaises(RuntimeError, lambda: func())

        schema = Schema({'v': Schema.ID})
        dataset = Dataset(loader, schema)

        # expect to get False when table is empty.
        for (idx, row_id, result) in recommender.clear_row(dataset):
            self.assertEqual(result, True)

        recommender.stop()
Exemple #8
0
    def test_complete_row_from_id(self):
        filter_warning()
        recommender = Recommender.run(Config())
        loader = StubLoader()

        # dataset must have id when execute `complete_row_from_id`
        schema = Schema({'v': Schema.NUMBER})
        dataset = Dataset(loader, schema)

        def func():
            for _ in recommender.complete_row_from_id(dataset):
                pass

        self.assertRaises(RuntimeError, lambda: func())

        schema = Schema({'v': Schema.ID})
        dataset = Dataset(loader, schema)
        for (idx, row_id, d) in recommender.complete_row_from_id(dataset):
            self.assertEqual(0, len(d.string_values))
            self.assertEqual(0, len(d.num_values))
            self.assertEqual(0, len(d.binary_values))

        recommender.stop()
Exemple #9
0
 def test_embedded(self):
     recommender = Recommender.run(Config(), embedded=True)
Exemple #10
0
 def test_default(self):
     config = Config.default()
     self.assertEqual('lsh', config['method'])
Exemple #11
0
 def test_methods(self):
     config = Config()
     self.assertTrue(isinstance(config.methods(), list))
Exemple #12
0
 def test_simple(self):
     config = Config()
     self.assertEqual('lsh', config['method'])
Exemple #13
0
 def test_default(self):
   config = Config.default()
   self.assertEqual('lsh', config['method'])
Exemple #14
0
 def test_methods(self):
   config = Config()
   self.assertTrue(isinstance(config.methods(), list))
Exemple #15
0
from jubakit.loader.csv import CSVLoader

# Load a CSV file.
loader = CSVLoader('npb.csv')

# Define a Schema that defines types for each columns of the CSV file.
schema = Schema({
    'name': Schema.ID,
    'team': Schema.STRING,
}, Schema.NUMBER)

# Create a Dataset.
dataset = Dataset(loader, schema)

# Create an Recommender Service.
cfg = Config(method='lsh')
recommender = Recommender.run(cfg)

# Update the Recommender model.
for (idx, row_id, success) in recommender.update_row(dataset):
    pass

# Calculate the similarity in recommender model from row-id and display top-2 similar items.
print('{0}\n recommend similar players from row-id \n{1}'.format(
    '-' * 60, '-' * 60))
for (idx, row_id, result) in recommender.similar_row_from_id(dataset, size=3):
    if idx % 10 == 0:
        print(
            'player {0} is similar to : {1} (score:{2:.3f}), {3} (score:{4:.3f})'
            .format(result[0].id, result[1].id, result[1].score, result[2].id,
                    result[2].score))