print x, population[0].fitness # evaluate children for individual in range(0, population_size): children_pop[individual].evaluate() children_pop.sort(key=lambda f:f.fitness, reverse=True) # create a new population and fill it with the 20 best ones from parents and 20 best ones from children new_population = [] for x in range(0, int(0.1 * population_size)): new_population.append(population[x]) new_population.append(children_pop[x]) for x in range(0, int(0.4 * population_size)): new_population.append(random.choice(children_pop)) new_population.append(random.choice(population)) #new_population.append(random.choice(children_pop)) population = new_population # sort new population and keep track of the best player from jumpmain import game_function print best.fitness, '< fitness ', best.weights ann = best.copyNeuron() print game_function(ann, True)
best = population[0] print x, population[0].fitness # evaluate children for individual in range(0, population_size): children_pop[individual].evaluate() children_pop.sort(key=lambda f: f.fitness, reverse=True) # create a new population and fill it with the 20 best ones from parents and 20 best ones from children new_population = [] for x in range(0, int(0.1 * population_size)): new_population.append(population[x]) new_population.append(children_pop[x]) for x in range(0, int(0.4 * population_size)): new_population.append(random.choice(children_pop)) new_population.append(random.choice(population)) #new_population.append(random.choice(children_pop)) population = new_population # sort new population and keep track of the best player from jumpmain import game_function print best.fitness, '< fitness ', best.weights ann = best.copyNeuron() print game_function(ann, True)
def evaluate_neuron(self): return jumpmain.game_function(self)