def setUpClass(cls): jv = JvWorker(A=A, alpha=alpha, beta=beta, grid_size=grid_size) cls.jv = jv # compute solution v_init = _get_vf_guess(jv) cls.V = compute_fixed_point(jv.bellman_operator, v_init) cls.s_pol, cls.phi_pol = jv.bellman_operator(cls.V * 0.999, return_policies=True)
""" Origin: QE by John Stachurski and Thomas J. Sargent Filename: jv_test.py Authors: John Stachurski and Thomas Sargent LastModified: 11/08/2013 Tests jv.py with a particular parameterization. """ import matplotlib.pyplot as plt from quantecon import compute_fixed_point from jv import JvWorker # === solve for optimal policy === # wp = JvWorker(grid_size=25) v_init = wp.x_grid * 0.5 V = compute_fixed_point(wp.bellman_operator, v_init, max_iter=40) s_policy, phi_policy = wp.bellman_operator(V, return_policies=True) # === plot policies === # fig, ax = plt.subplots() ax.set_xlim(0, max(wp.x_grid)) ax.set_ylim(-0.1, 1.1) ax.plot(wp.x_grid, phi_policy, 'b-', label='phi') ax.plot(wp.x_grid, s_policy, 'g-', label='s') ax.set_xlabel("x") ax.legend() plt.show()