def one_or_more_timeref_redblk(note): note = n2vals(note) timeCount = ca.daysofweek(note)['daysofweek'] if type( ca.daysofweek(note)) == dict else ca.daysofweek(note)[1] timeCount += ca.months(note)['months'] if type( ca.months(note)) == dict else ca.months(note)[1] return 'red' if timeCount > 0 else 'black'
def one_or_more_daysofweek_redblk(note): note = n2vals(note) lines = ca.daysofweek(note) if type(lines) == dict: val = lines['daysofweek'] else: val = lines[1] return 'red' if lines > 0 else 'black'
def one_or_more_verbs_redblk(note): note = n2vals(note) lines = ca.note_verbs(note) if type(lines) == dict: val = lines['note_verbs'] else: val = lines[1] return 'red' if val > 0 else 'black'
def one_or_more_lines_multicolor(note): note = n2vals(note) lines = ca.note_lines(note) if type(lines) == dict: val = lines['note_lines'] else: val = lines[1] if val == 1: return 'black' if val in [2, 3, 4, 5]: return 'blue' if val in range(6, 12): return 'orange' return 'red'
def one_or_more_lines_multicolor(note): note = n2vals(note) lines = ca.note_lines(note) if type(lines) == dict: val = lines['note_lines'] else: val = lines[1] if val == 1: return 'black' if val in [2,3,4,5]: return 'blue' if val in range(6,12): return 'orange' return 'red'
def user_note_rank_spearman(u): try: print u import jv3.study.thesis_figures as tfigs ff = [note_rank(tfigs.n2vals(n)) for n in u.note_owner.order_by('created')] ff = [x['note_rank'] for x in ff if x['note_rank'] is not None] reverse_standard = range(len(ff)) reverse_standard.reverse() return r('cor.test')(c(ff),c(reverse_standard),method='spearman')[3][0] except : import sys print sys.exc_info() return None
def user_note_rank_spearman(u): try: print u import jv3.study.thesis_figures as tfigs ff = [ note_rank(tfigs.n2vals(n)) for n in u.note_owner.order_by('created') ] ff = [x['note_rank'] for x in ff if x['note_rank'] is not None] reverse_standard = range(len(ff)) reverse_standard.reverse() return r('cor.test')(c(ff), c(reverse_standard), method='spearman')[3][0] except: import sys print sys.exc_info() return None
def two_or_more_sentences_redblk(note): note = n2vals(note) senCount = ca.note_sentences(note)['note_sentences'] if type(ca.note_sentences(note)) == dict else ca.note_sentences(note)[1] return 'red' if senCount > 1 else 'black'
def two_or_more_sentences_redblk(note): note = n2vals(note) senCount = ca.note_sentences(note)['note_sentences'] if type( ca.note_sentences(note)) == dict else ca.note_sentences(note)[1] return 'red' if senCount > 1 else 'black'
def one_or_more_timeref_redblk(note): note = n2vals(note) timeCount = ca.daysofweek(note)['daysofweek'] if type(ca.daysofweek(note)) == dict else ca.daysofweek(note)[1] timeCount += ca.months(note)['months'] if type(ca.months(note)) == dict else ca.months(note)[1] return 'red' if timeCount > 0 else 'black'
def one_or_more_todoref_redblk(note): note = n2vals(note) todoCount = ca.note_todos(note)['note_todos'] if type(ca.note_todos(note) ) == dict else ca.note_todos(note)[1] return 'red' if todoCount > 0 else 'black'
def one_or_no_url_redblk(note): note = n2vals(note) urls = ca.note_urls(note) if type(urls) == dict: return 'red' if urls['note_urls'] > 0 else 'black' return 'red' if urls[1] > 0 else 'black'
def initMaxEntModel(encoding, weights): maxEntModel = nltk.MaxentClassifier(encoding, weights) return maxEntModel def refClassifier(): ## Ref and nonRef thingies refNotes, nonRefNotes = splitNotes('reference') labels = ['reference', 'nonref'] mapping, weights = getStdMapping() encoding = nltk.BinaryMaxentFeatureEncoding(labels, mapping) maxEntModel = initMaxEntModel(encoding, weights) nvals = lambda note: tfigs.n2vals(note) pos_word = lambda word: nltk.pos_tag([word])[0][1] def pos_word(word): return nltk.pos_tag([word])[0][1] def word_is_verb(word): return pos_word(word) in ["VB", "VBD", "VBG", "VBN", "VBP", "VBZ"] def word_is_noun(word): return pos_word(word) in ["NN", "NNS", "NNP", "NNPS"]
def one_or_no_email_redblk(note): note = n2vals(note) emails = ca.note_emails(note) if type(emails) == dict: return 'red' if emails['email_addrs'] > 0 else 'black' return 'red' if emails[1] > 0 else 'black'
def compute_feature_named(feature_name,n): if getattr(ca,feature_name,None): return getattr(ca,feature_name)(n2vals(n))[feature_name] ## compute the feature given the note! return None
notCat.append(Note.objects.filter(id=k)[0]) return (cat, notCat) def initMaxEntModel(encoding, weights): maxEntModel = nltk.MaxentClassifier(encoding, weights) return maxEntModel def refClassifier(): ## Ref and nonRef thingies refNotes, nonRefNotes = splitNotes('reference') labels = ['reference', 'nonref'] mapping, weights = getStdMapping() encoding = nltk.BinaryMaxentFeatureEncoding(labels, mapping) maxEntModel = initMaxEntModel(encoding, weights) nvals = lambda note : tfigs.n2vals(note) pos_word = lambda word: nltk.pos_tag([word])[0][1] def pos_word(word): return nltk.pos_tag([word])[0][1] def word_is_verb(word): return pos_word(word) in ["VB","VBD","VBG","VBN","VBP","VBZ"] def word_is_noun(word): return pos_word(word) in ["NN","NNS","NNP","NNPS"] try: pass #mem = mem #if mem == None:
def one_or_more_todoref_redblk(note): note = n2vals(note) todoCount = ca.note_todos(note)['note_todos'] if type( ca.note_todos(note)) == dict else ca.note_todos(note)[1] return 'red' if todoCount > 0 else 'black'
def compute_feature_named(feature_name, n): if getattr(ca, feature_name, None): return getattr(ca, feature_name)( n2vals(n))[feature_name] ## compute the feature given the note! return None