Exemple #1
0
def test_nis_wfss_background(filters, pupils, make_wfss_datamodel):
    """Test background subtraction for NIRISS WFSS modes."""
    data = make_wfss_datamodel

    data.meta.instrument.filter = filters
    data.meta.instrument.pupil = pupils
    data.meta.instrument.detector = 'NIS'
    data.meta.instrument.name = 'NIRISS'
    data.meta.exposure.type = 'NIS_WFSS'

    wcs_corrected = AssignWcsStep.call(data)

    # Get References
    wavelenrange = Step().get_reference_file(wcs_corrected, "wavelengthrange")
    bkg_file = Step().get_reference_file(wcs_corrected, 'wfssbkg')

    mask = mask_from_source_cat(wcs_corrected, wavelenrange)

    with datamodels.open(bkg_file) as bkg_ref:
        bkg_ref = no_NaN(bkg_ref)

        # calculate backgrounds
        pipeline_data_mean = robust_mean(wcs_corrected.data[mask])
        test_data_mean, _, _ = sigma_clipped_stats(wcs_corrected.data, sigma=2)

        pipeline_reference_mean = robust_mean(bkg_ref.data[mask])
        test_reference_mean, _, _ = sigma_clipped_stats(bkg_ref.data, sigma=2)

        assert np.isclose([pipeline_data_mean], [test_data_mean], rtol=1e-3)
        assert np.isclose([pipeline_reference_mean], [test_reference_mean],
                          rtol=1e-1)
Exemple #2
0
def test_no_Nan():
    """Make sure that nan values are filled with fill value"""
    # Make data model
    model = datamodels.ImageModel()
    data = np.random.rand(10, 10)

    # Randomly insert NaNs
    data.ravel()[np.random.choice(data.size, 10, replace=False)] = np.nan
    model.data = data

    # Randomly select fill value
    fill_val = np.random.randint(0, 20)

    # Call no_NaN
    result = no_NaN(model, fill_value=fill_val)

    # Use np.NaN to find NaNs.
    test_result = np.isnan(model.data)
    # Assign fill values to NaN indices
    model.data[test_result] = fill_val

    # Make sure arrays are equal.
    assert np.array_equal(model.data, result.data)