Exemple #1
0
def test_ramp_fit_nircam(_bigdata):
    """

    Regression test of ramp_fit step performed on NIRCam data.

    """
    suffix = 'rampfit'
    output_file_base, output_files = add_suffix('rampfit_output.fits', suffix,
                                                list(range(1)))

    try:
        os.remove(output_files[0])
        os.remove("rampfit_opt_out.fits")
    except:
        pass

    RampFitStep.call(
        _bigdata +
        '/nircam/test_ramp_fit/jw00017001001_01101_00001_NRCA1_jump.fits',
        output_file=output_file_base,
        suffix=suffix,
        save_opt=True,
        opt_name='rampfit_opt_out.fits')

    # compare primary output
    n_priout = output_files[0]
    h = pf.open(n_priout)
    n_priref = _bigdata + '/nircam/test_ramp_fit/jw00017001001_01101_00001_NRCA1_ramp_fit.fits'
    href = pf.open(n_priref)
    newh = pf.HDUList([h['primary'], h['sci'], h['err'], h['dq']])
    newhref = pf.HDUList(
        [href['primary'], href['sci'], href['err'], href['dq']])
    result = pf.diff.FITSDiff(
        newh,
        newhref,
        ignore_keywords=['DATE', 'CAL_VER', 'CAL_VCS', 'CRDS_VER', 'CRDS_CTX'],
        rtol=0.00001)
    assert result.identical, result.report()

    # compare optional output
    n_optout = 'rampfit_opt_out_fitopt.fits'
    h = pf.open(n_optout)
    n_optref = _bigdata + '/nircam/test_ramp_fit/rampfit_opt_out.fits'
    href = pf.open(n_optref)
    newh = pf.HDUList([
        h['primary'], h['slope'], h['sigslope'], h['yint'], h['sigyint'],
        h['pedestal'], h['weights'], h['crmag']
    ])
    newhref = pf.HDUList([
        href['primary'], href['slope'], href['sigslope'], href['yint'],
        href['sigyint'], href['pedestal'], href['weights'], href['crmag']
    ])
    result = pf.diff.FITSDiff(
        newh,
        newhref,
        ignore_keywords=['DATE', 'CAL_VER', 'CAL_VCS', 'CRDS_VER', 'CRDS_CTX'],
        rtol=0.00001)
    assert result.identical, result.report()
def test_ramp_fit_niriss(_bigdata):
    """
    Regression test of ramp_fit step performed on NIRISS data.
    """
    suffix = 'rampfit'
    output_file_base, output_files = add_suffix('rampfit_output.fits', suffix,
                                                list(range(1)))

    RampFitStep.call(
        _bigdata +
        '/niriss/test_ramp_fit/jw00034001001_01101_00001_NIRISS_jump.fits',
        save_opt=True,
        output_file=output_file_base,
        suffix=suffix,
        opt_name='rampfit_opt_out.fits')
    # primary output
    n_priout = output_files[0]
    h = fits.open(n_priout)
    n_priref = _bigdata + '/niriss/test_ramp_fit/jw00034001001_01101_00001_NIRISS_ramp_fit.fits'
    href = fits.open(n_priref)
    newh = fits.HDUList([h['primary'], h['sci'], h['err'], h['dq']])
    newhref = fits.HDUList(
        [href['primary'], href['sci'], href['err'], href['dq']])
    result = fits.diff.FITSDiff(
        newh,
        newhref,
        ignore_keywords=['DATE', 'CAL_VER', 'CAL_VCS', 'CRDS_VER', 'CRDS_CTX'],
        rtol=0.00001)
    assert result.identical, result.report()

    # optional output
    n_optout = 'rampfit_opt_out_fitopt.fits'
    h = fits.open(n_optout)
    n_optref = _bigdata + '/niriss/test_ramp_fit/jw00034001001_01101_00001_NIRISS_uncal_opt.fits'
    href = fits.open(n_optref)
    newh = fits.HDUList([
        h['primary'], h['slope'], h['sigslope'], h['yint'], h['sigyint'],
        h['pedestal'], h['weights'], h['crmag']
    ])
    newhref = fits.HDUList([
        href['primary'], href['slope'], href['sigslope'], href['yint'],
        href['sigyint'], href['pedestal'], href['weights'], href['crmag']
    ])

    result = fits.diff.FITSDiff(
        newh,
        newhref,
        ignore_keywords=['DATE', 'CAL_VER', 'CAL_VCS', 'CRDS_VER', 'CRDS_CTX'],
        rtol=0.00001)
    assert result.identical, result.report()
Exemple #3
0
def test_int_times2(generate_miri_reffiles, setup_inputs):
    # Test whether int_times table gets copied to output when it should
    override_gain, override_readnoise = generate_miri_reffiles
    ingain, inreadnoise = 6, 7
    grouptime = 3.0
    nints, ngroups, nrows, ncols = 5, 3, 2, 2
    model, gdq, rnModel, pixdq, err, gain = setup_inputs(ngroups=ngroups,
                                                         readnoise=inreadnoise,
                                                         nints=nints,
                                                         nrows=nrows,
                                                         ncols=ncols,
                                                         gain=ingain,
                                                         deltatime=grouptime)

    # Set TSOVISIT false, in which case the int_times table should come back with zero length
    model.meta.visit.tsovisit = True

    # Call ramp fit through the step class
    slopes, cube_model = RampFitStep.call(
        model,
        override_gain=override_gain,
        override_readnoise=override_readnoise,
        maximum_cores="none")

    assert slopes is not None
    assert cube_model is not None

    assert (len(cube_model.int_times) == nints)
Exemple #4
0
def test_ramp_fit_step(generate_miri_reffiles, setup_inputs):
    """
    Create a simple input to instantiate RampFitStep and execute a call to test
    the step class and class method.
    """
    override_gain, override_readnoise = generate_miri_reffiles
    ingain, inreadnoise = 6, 7
    grouptime = 3.0
    nints, ngroups, nrows, ncols = 1, 5, 2, 2
    model, gdq, rnModel, pixdq, err, gain = setup_inputs(ngroups=ngroups,
                                                         readnoise=inreadnoise,
                                                         nints=nints,
                                                         nrows=nrows,
                                                         ncols=ncols,
                                                         gain=ingain,
                                                         deltatime=grouptime)

    # Add basic ramps to each pixel
    pix = [(0, 0), (0, 1), (1, 0), (1, 1)]
    base_ramp = np.array([k + 1 for k in range(ngroups)])
    ans_slopes = np.zeros(shape=(2, 2))
    for k, p in enumerate(pix):
        ramp = base_ramp * (k + 1)  # A simple linear ramp
        x, y = p
        model.data[0, :, x, y] = ramp
        ans_slopes[x, y] = ramp[0] / grouptime

    # Call ramp fit through the step class
    slopes, cube_model = RampFitStep.call(
        model,
        override_gain=override_gain,
        override_readnoise=override_readnoise,
        maximum_cores="none")

    assert slopes is not None
    assert cube_model is not None

    # Test to make sure the ramps are as expected and that the step is complete
    np.testing.assert_allclose(slopes.data, ans_slopes, rtol=1e-5)
    assert slopes.meta.cal_step.ramp_fit == "COMPLETE"
Exemple #5
0
def test_subarray_5groups(tmpdir_factory):
    # all pixel values are zero. So slope should be zero
    gainfile = str(tmpdir_factory.mktemp("data").join("gain.fits"))
    readnoisefile = str(tmpdir_factory.mktemp("data").join('readnoise.fits'))

    model1, gdq, rnModel, pixdq, err, gain = setup_subarray_inputs(
        ngroups=5,
        subxstart=10,
        subystart=20,
        subxsize=5,
        subysize=15,
        readnoise=50)
    gain.save(gainfile)
    rnModel.save(readnoisefile)

    model1.meta.exposure.ngroups = 11
    model1.data[0, 0, 12, 1] = 10.0
    model1.data[0, 1, 12, 1] = 15.0
    model1.data[0, 2, 12, 1] = 25.0
    model1.data[0, 3, 12, 1] = 33.0
    model1.data[0, 4, 12, 1] = 60.0

    # Call ramp fit through the step class
    slopes, cube_model = RampFitStep.call(model1,
                                          override_gain=gainfile,
                                          override_readnoise=readnoisefile,
                                          maximum_cores="none",
                                          save_opt=True)

    assert slopes is not None
    assert cube_model is not None

    xvalues = np.arange(5) * 1.0
    yvalues = np.array([10, 15, 25, 33, 60])
    coeff = np.polyfit(xvalues, yvalues, 1)

    np.testing.assert_allclose(slopes.data[12, 1], coeff[0], 1e-6)
Exemple #6
0
        with open(txt_outputs_summary, "a") as tf:
            tf.write(line2write + "\n")
else:
    # steps to be ran, in order
    steps_to_run = [
        GroupScaleStep(),
        DQInitStep(),
        SaturationStep(),
        SuperBiasStep(),
        RefPixStep(),
        RSCD_Step(),
        LastFrameStep(),
        LinearityStep(),
        DarkCurrentStep(),
        JumpStep(),
        RampFitStep(),
        GainScaleStep()
    ]
    comp_keys = [
        "S_GRPSCL", "S_DQINIT", "S_SATURA", "S_SUPERB", "S_REFPIX", "S_RSCD",
        "S_LASTFR", "S_LINEAR", "S_DARK", "S_JUMP", "S_RAMP", "S_GANSCL"
    ]

    # run the pipeline step by step
    for i, stp_instance in enumerate(steps_to_run):
        stp = stp_instance
        if i == 0:
            step_input_file = fits_input_uncal_file
        else:
            # check if step was completed and find the appropriate input file
            j = 1
Exemple #7
0
def one_group_suppressed(nints, suppress, setup_inputs):
    """
    Creates three pixel ramps.
    The first ramp has no good groups.
    The second ramp has one good group.
    The third ramp has all good groups.

    Sets up the models to be used by the tests for the one
    group suppression flag.
    """
    # Define the data.
    ngroups, nrows, ncols = 5, 1, 3
    dims = nints, ngroups, nrows, ncols
    rnoise, gain = 10, 1
    group_time, frame_time = 5.0, 1
    rampmodel, gdq, rnModel, pixdq, err, gmodel = setup_inputs(
        ngroups=ngroups,
        readnoise=rnoise,
        nints=nints,
        nrows=nrows,
        ncols=ncols,
        gain=gain,
        deltatime=group_time)

    rampmodel.meta.exposure.frame_time = frame_time

    # Setup the ramp data and DQ.
    arr = np.array([k + 1 for k in range(ngroups)], dtype=float)
    sat = dqflags.pixel["SATURATED"]
    sat_dq = np.array([sat] * ngroups, dtype=rampmodel.groupdq.dtype)
    zdq = np.array([0] * ngroups, dtype=rampmodel.groupdq.dtype)

    rampmodel.data[0, :, 0, 0] = arr
    rampmodel.data[0, :, 0, 1] = arr
    rampmodel.data[0, :, 0, 2] = arr

    rampmodel.groupdq[0, :, 0, 0] = sat_dq  # All groups sat
    rampmodel.groupdq[0, :, 0, 1] = sat_dq  # 0th good, all others sat
    rampmodel.groupdq[0, 0, 0, 1] = 0
    rampmodel.groupdq[0, :, 0, 2] = zdq  # All groups good

    if nints > 1:
        rampmodel.data[1, :, 0, 0] = arr
        rampmodel.data[1, :, 0, 1] = arr
        rampmodel.data[1, :, 0, 2] = arr

        # All good ramps
        rampmodel.groupdq[1, :, 0, 0] = zdq
        rampmodel.groupdq[1, :, 0, 1] = zdq
        rampmodel.groupdq[1, :, 0, 2] = zdq

    rampmodel.suppress_one_group_ramps = suppress

    # Call ramp fit through the step class
    slopes, cube_model = RampFitStep.call(rampmodel,
                                          override_gain=gmodel,
                                          override_readnoise=rnModel,
                                          suppress_one_group=suppress,
                                          maximum_cores="none")

    return slopes, cube_model, dims
Exemple #8
0
def run_caldet1(fits_input_uncal_file, step_by_step=False):
    if not os.path.isfile(fits_input_uncal_file):
        print("Input file not found in the current directory. Unable to proceed, exiting script.")
        exit()

    # Get the detector used
    detector = fits.getval(fits_input_uncal_file, "DETECTOR", 0)

    # Get the cfg file
    calwebb_detector1_cfg, calwebb_tso1_cfg, calwebb_dark_cfg, output_dir, mode_used, rawdatrt = get_caldet1cfg_and_workingdir()
    if mode_used != "BOTS" and mode_used.lower() != "dark":
        cfg_file = calwebb_detector1_cfg
    elif mode_used == "BOTS":
        cfg_file = calwebb_tso1_cfg
    elif mode_used.lower() == "dark":
        cfg_file = calwebb_dark_cfg
    configfile_used = "Using this configuration file: "+cfg_file

    # Initiate the PTT log file
    PTTcaldetector1_log = os.path.join(output_dir, 'PTT_caldetector1_'+detector+'.log')
    print("Information outputed to screen from this script will be logged in file: ", PTTcaldetector1_log)
    for handler in logging.root.handlers[:]:
        logging.root.removeHandler(handler)
    logging.basicConfig(filename=PTTcaldetector1_log, level=logging.DEBUG)

    print(configfile_used)
    logging.info(configfile_used)

    # create the text file to record the names of the output files and the time the pipeline took to run
    txt_outputs_summary = "cal_detector1_outputs_and_times_"+detector+".txt"
    end_time_total = []
    line0 = "# {:<20}".format("Input file: "+fits_input_uncal_file)
    line1 = "# {:<16} {:<19} {:<20}".format("Step", "Output file", "Time to run [s]")
    with open(txt_outputs_summary, "w+") as tf:
        tf.write(line0+"\n")
        tf.write(line1+"\n")

    # Name of the file containing all the pipeline output
    caldetector1_pipeline_log = "pipeline.log"

    # copy the configuration file to create the pipeline log
    stpipelogcfg = calwebb_detector1_cfg.replace("calwebb_detector1.cfg", "stpipe-log.cfg")
    subprocess.run(["cp", stpipelogcfg, "."])

    #final_output_caldet1 = "gain_scale.fits"
    final_output_caldet1 = "final_output_caldet1_"+detector+".fits"
    output_names = ["group_scale.fits", "dq_init.fits", "saturation.fits", "superbias.fits", "refpix.fits",
                    "lastframe.fits", "linearity.fits", "dark_current.fits", "jump.fits", "ramp_fit.fits",
                    final_output_caldet1]

    if not step_by_step:
        print("Got arguments and will run the calwebb_detector1 pipeline in full. This may take a while...")

        # start the timer to compute the step running time
        start_time = time.time()
        result = Detector1Pipeline.call(fits_input_uncal_file, config_file=cfg_file)
        result.save(final_output_caldet1)

        # end the timer to compute pipeline running time
        end_time = time.time() - start_time  # this is in seconds
        time2finish_string = " * calwebb_detector1 took "+repr(end_time)+" seconds to finish *"
        print(time2finish_string)
        logging.info(time2finish_string)
        if end_time > 60.0:
            end_time_min = round(end_time / 60.0, 1)   # in minutes
            tot_time = repr(end_time_min)+"min"
            if end_time_min > 60.0:
                end_time_hr = round(end_time_min / 60.0, 1)   # in hrs
                tot_time = repr(end_time_hr)+"hr"
        else:
            tot_time = str(round(end_time, 1))+"sec"
        total_time = "{:<18} {:<20} {:<20}".format("", "total_time = ", repr(end_time)+"  ="+tot_time)

        # get the running time for the individual steps
        if os.path.isfile(caldetector1_pipeline_log):
            step_running_times = calculate_step_run_time(caldetector1_pipeline_log, output_names)

            # write step running times in the text file
            end_time_list = []
            for outnm in output_names:
                stp = outnm.replace(".fits", "")
                if stp in step_running_times:
                    step_time = step_running_times[stp]["run_time"]
                else:
                    step_time = "N/A"
                end_time_list.append(step_time)
                line2write = "{:<18} {:<20} {:<20}".format(stp, outnm, step_time)
                with open(txt_outputs_summary, "a") as tf:
                    tf.write(line2write+"\n")
        else:
            print("No pipeline.log found. Unable to record times per step.")

    else:
        print("Got arguments and will run the calwebb_detector1 pipeline step by step.")

        # steps to be ran, in order
        steps_to_run = [GroupScaleStep(), DQInitStep(), SaturationStep(), SuperBiasStep(), RefPixStep(),
                        LastFrameStep(), LinearityStep(), DarkCurrentStep(), JumpStep(), RampFitStep(), GainScaleStep()]
        comp_keys = ["S_GRPSCL", "S_DQINIT", "S_SATURA", "S_SUPERB", "S_REFPIX", "S_LASTFR", "S_LINEAR",
                     "S_DARK", "S_JUMP", "S_RAMP", "S_GANSCL"]

        # run the pipeline step by step
        for i, stp_instance in enumerate(steps_to_run):
            stp = stp_instance
            if i == 0:
                step_input_file = fits_input_uncal_file
            else:
                # check if step was completed and find the appropriate input file
                j = 1
                continue_while = True
                while continue_while:
                    step_input_file = output_names[i-j]
                    if (i-j == 0):
                        step_input_file = fits_input_uncal_file
                        break
                    if i == len(output_names)-1:
                        step_input_file = glob("*ramp*fit.fits")[0]
                        break
                    if os.path.isfile(step_input_file):
                        completion_key_val = fits.getval(step_input_file, comp_keys[i-j])
                        msg = "Checking for next step... "
                        completion_keywd_msg = " * Completion keyword: "+comp_keys[i-j]+"   and value: "+completion_key_val
                        print(msg)
                        print(completion_keywd_msg)
                        logging.info(msg)
                        logging.info(completion_keywd_msg)
                        if "SKIPPED" in completion_key_val:
                            j += 1
                        elif "COMPLETE" in completion_key_val:
                            continue_while = False
            running_stp_msg = "\n-> Running step: "+str(stp)+"   with input file: "+step_input_file
            output_msg = "   output will be saved as: "+output_names[i]
            logging.info(running_stp_msg)
            logging.info(output_msg)

            # start the timer to compute the step running time
            start_time = time.time()

            if "ramp" not in output_names[i]:
                result = stp.call(step_input_file)
                result.save(output_names[i])
            else:
                # the pipeline works differently for the ramp_fit step because it has more than one output
                # this step is also hanging from the command line
                #subprocess.call(["strun", "jwst.ramp_fitting.RampFitStep", "jump.fits"])
                (out_slope, int_slope) = stp.call(step_input_file)
                out_slope.save(output_names[i])
                try:
                    int_slope.save("ramp_fit_int.fits")
                except AttributeError:
                    msg = "File has only 1 integration."
                    print(msg)
                    logging.info(msg)

            # end the timer to compute cal_detector1 running time
            et = time.time() - start_time   # this is in seconds
            end_time = repr(et)
            end_time_total.append(et)
            step = output_names[i].replace(".fits", "")
            msg = " * calwebb_detector1 step "+step+" took "+end_time+" seconds to finish * \n"
            print(msg)
            logging.info(msg)
            if et > 60.0:
                end_time_min = round(et / 60.0, 1)   # in minutes
                end_time = repr(end_time_min)+"min"
                if end_time_min > 60.0:
                    end_time_hr = round(end_time_min / 60.0, 1)   # in hrs
                    end_time = repr(end_time_hr)+"hr"
            else:
                end_time = repr(round(et, 1))+"sec"

            # record results in text file
            line2write = "{:<18} {:<20} {:<20}".format(step, output_names[i], end_time)
            with open(txt_outputs_summary, "a") as tf:
                tf.write(line2write+"\n")

        # record total time in text file
        tot_time_sec = sum(end_time_total)
        if tot_time_sec > 60.0:
            tot_time_min = round((tot_time_sec/60.0), 1)
            tot_time = repr(tot_time_min)+"min"
            if tot_time_min > 60.0:
                tot_time_hr = round((tot_time_min/60.0), 1)
                tot_time = repr(tot_time_hr)+"hr"
        else:
            tot_time = round((tot_time_sec/60.0), 1)
        total_time = "{:<18} {:>20} {:>20}".format("", "total_time  ", repr(tot_time_sec)+"  ="+tot_time)

    # record total time in text file
    with open(txt_outputs_summary, "a") as tf:
        tf.write(total_time+"\n")
    msg = "\n ** Calwebb_detector 1 took "+repr(tot_time)+" to complete **"
    print(msg)
    logging.info(msg)

    # Move products to working dir

    # rename and move the pipeline log file
    new_name = "caldetector1_pipeline_"+detector+".log"
    if os.path.isfile(caldetector1_pipeline_log):
        os.rename(caldetector1_pipeline_log, os.path.join(output_dir, new_name))

    # move the PTT log file and the fits intermediary product files
    if os.getcwd() != output_dir:
        fits_list = glob("*.fits")
        if len(fits_list) >= 1:
            msg = "Output fits files are located at: "+output_dir
            print(msg)
            logging.info(msg)
            for ff in fits_list:
                if "step_" in ff:
                    ff_newname = os.path.join(output_dir, ff.replace("step_", ""))
                else:
                    ff_newname = os.path.join(output_dir, ff)
                if detector.lower() not in ff.lower():
                    ff_newname = ff_newname.replace(".fits", "_"+detector+".fits")
                subprocess.run(["mv", ff, ff_newname])
            # move text files too
            subprocess.run(["mv", txt_outputs_summary, output_dir])

        else:
            msg = "No fits files detected after calwbb_detector1 finished. Exiting script."
            print(msg)
            logging.info(msg)

    msg = "Script  run_cal_detector1.py  finished."
    print(msg)
    logging.info(msg)
def test_ramp_fit_miri2(_bigdata):
    """
    Regression test of ramp_fit step performed on MIRI data.
    """
    suffix = 'rampfit'
    output_file_base, output_files = add_suffix('rampfit2_output.fits', suffix,
                                                list(range(2)))

    RampFitStep.call(
        _bigdata +
        '/miri/test_ramp_fit/jw80600012001_02101_00003_mirimage_jump.fits',
        save_opt=True,
        opt_name='rampfit2_opt_out.fits',
        output_file=output_file_base,
        suffix=suffix)

    # compare primary output
    n_priout = output_files[0]
    h = fits.open(n_priout)
    n_priref = _bigdata + '/miri/test_ramp_fit/jw80600012001_02101_00003_mirimage_ramp.fits'
    href = fits.open(n_priref)
    newh = fits.HDUList([h['primary'], h['sci'], h['err'], h['dq']])
    newhref = fits.HDUList(
        [href['primary'], href['sci'], href['err'], href['dq']])
    result = fits.diff.FITSDiff(
        newh,
        newhref,
        ignore_keywords=['DATE', 'CAL_VER', 'CAL_VCS', 'CRDS_VER', 'CRDS_CTX'],
        rtol=0.00001)
    assert result.identical, result.report()

    # compare integration-specific output
    n_intout = output_files[1]
    h = fits.open(n_intout)
    n_intref = _bigdata + '/miri/test_ramp_fit/jw80600012001_02101_00003_mirimage_int.fits'
    href = fits.open(n_intref)
    newh = fits.HDUList([h['primary'], h['sci'], h['err'], h['dq']])
    newhref = fits.HDUList(
        [href['primary'], href['sci'], href['err'], href['dq']])
    result = fits.diff.FITSDiff(
        newh,
        newhref,
        ignore_keywords=['DATE', 'CAL_VER', 'CAL_VCS', 'CRDS_VER', 'CRDS_CTX'],
        rtol=0.00001)
    assert result.identical, result.report()

    # compare optional output
    n_optout = 'rampfit2_opt_out_fitopt.fits'
    h = fits.open(n_optout)
    n_optref = _bigdata + '/miri/test_ramp_fit/jw80600012001_02101_00003_mirimage_opt.fits'
    href = fits.open(n_optref)
    newh = fits.HDUList([
        h['primary'], h['slope'], h['sigslope'], h['yint'], h['sigyint'],
        h['pedestal'], h['weights'], h['crmag']
    ])
    newhref = fits.HDUList([
        href['primary'], href['slope'], href['sigslope'], href['yint'],
        href['sigyint'], href['pedestal'], href['weights'], href['crmag']
    ])
    result = fits.diff.FITSDiff(
        newh,
        newhref,
        ignore_keywords=['DATE', 'CAL_VER', 'CAL_VCS', 'CRDS_VER', 'CRDS_CTX'],
        rtol=0.00001)
    assert result.identical, result.report()